

Odoo 14
Development
Cookbook
Fourth Edition

Rapidly build, customize, and manage secure and
efficient business apps using Odoo's latest features

Parth Gajjar

Alexandre Fayolle

Holger Brunn

Daniel Reis

BIRMINGHAM—MUMBAI

Odoo 14 Development Cookbook
Fourth Edition
Copyright © 2020 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Aaron Lazar

Associate Publishing Product Manager: Shweta Bairoliya

Senior Editor: Rohit Singh

Content Development Editor: Dwayne Fernandes, Tiksha Lad

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Prashant Ghare

First published: April 2016

Second edition: January 2018

Third edition: April 2019

Fourth edition: December 2020

Production reference: 4231220

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-031-9

www.packt.com

http://www.packt.com

I dedicate this book to my parents with love and gratitude. Thank you for
giving me the freedom and support to follow my ambitions throughout my

childhood.

– Parth Gajjar

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the authors
Parth Gajjar is an Odoo expert with a deep understanding of the Odoo framework.
He started his career at Odoo and spent 7 years in the R&D department at Odoo India.
During his time at Odoo, he worked on several key features, including a marketing
automation app, mobile application, report engine, domain builder, and more. He also
worked as a code reviewer and helped manage the code quality of the new features.
Later, he started his own venture named Droggol and now provides various development
services related to Odoo. He loves working on Odoo and solving real-world business
problems with different technologies. He often gives technical training to Odoo
developers.

I would like to thank my parents and family members for all of the support
they have given throughout the writing of this book.

Alexandre Fayolle started working with Linux and free software in the mid-1990s and
quickly became interested in the Python programming language. In 2012, he joined
Camptocamp to share his expertise on Python, PostgreSQL, and Linux with the team
implementing Odoo. He currently manages projects for Camptocamp and is strongly
involved in the Odoo Community Association. In his spare time, he likes to play jazz on
the vibraphone.

Holger Brunn has been a fervent open source advocate since he came into contact with
the open source market sometime in the nineties.

He has programmed for ERP and similar systems in different positions since 2001. For the
last 10 years, he has dedicated his time to TinyERP, which became OpenERP and evolved
into Odoo. Currently, he works at Therp BV in the Netherlands as a developer and is an
active member of the Odoo Community Association.

Daniel Reis has had a long career in the IT industry, largely as a consultant implementing
business applications in a variety of sectors, and today works for Securitas, a multinational
security services provider.

He has been working with Odoo (formerly OpenERP) since 2010, is an active contributor
to the Odoo Community Association projects, is currently a member of the board of the
Odoo Community Association, and collaborates with ThinkOpen Solutions, a leading
Portuguese Odoo integrator.

About the reviewer
Kishan Gajjar has a degree in computer engineering. He loves programming and
designing. He has expertise in various technologies, including Python, JavaScript, and
CSS. He is an employee of the Indian branch of Odoo. He joined Odoo 2 years ago and
currently works in their R&D department. Here, he mostly works on the website builder,
themes, and backend JavaScript frameworks.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

1
Installing the Odoo Development Environment

Understanding the Odoo
ecosystem 30
Odoo editions 30
Git repositories 31
Runbot 31
Odoo app store 32
Odoo Community Association 33
Official Odoo help forum 33
Odoo's eLearning platform 33

Easy installation of Odoo from
source 34
Getting ready 34
How to do it... 35
How it works... 36

Managing Odoo server databases 40

Getting ready 40
How to do it... 40
How it works... 48
There's more... 49

Storing the instance
configuration in a file 50
How to do it... 50
How it works... 51

Activating Odoo developer tools 54
How to do it... 54
How it works... 56

Updating the add-on modules list 56
Getting ready 56
How to do it… 57
How it works… 58

2
Managing Odoo Server Instances

Configuring the add-ons path 60
Getting ready 60
How to do it… 60
How it works… 61

There's more… 61

Standardizing your instance
directory layout 62
How to do it… 63

Table of Contents

ii Table of Contents

How it works… 65
There's more... 66

Installing and upgrading local
add-on modules 67
Getting ready 67
How to do it… 67
How it works… 71
There's more… 73

Installing add-on modules from
GitHub 74
Getting ready 74
How to do it… 74

How it works… 75
There's more… 75

Applying changes to add-ons 75
Getting ready 75
How to do it… 76
How it works… 76
See also 77

Applying and trying proposed
pull requests 77
Getting ready 77
How to do it… 77
How it works… 78
There's more… 78

3
Creating Odoo
Add-On Modules

Technical requirements 82
What is an Odoo add-on module? 82
Creating and installing a new
add-on module 83
Getting ready 83

How to do it... 84
How it works... 85

Completing the add-on module
manifest 86
Getting ready 86
How to do it... 86
How it works... 87
There's more… 88

Organizing the add-on module
file structure 89

Getting ready 89
How to do it... 89
How it works... 91

Adding models 92
Getting ready 92
How to do it... 93
How it works... 94

Adding menu items and views 95
Getting ready 95
How to do it... 95
How it works... 99

Adding access security 101
Getting ready 101
How to do it... 101
How it works… 103
See also 103

Table of Contents iii

Using the scaffold command to
create
a module 103

Getting ready 103
How to do it... 104
How it works... 105

4
Application Models

Technical requirements 108
Defining the model
representation and order 108
Getting ready 108
How to do it... 109
How it works... 110
There's more... 111

Adding data fields to a model 112
Getting ready 112
How to do it... 112
How it works... 114
There's more... 117

Using a float field with
configurable precision 119
Getting ready 119
How to do it... 119
How it works... 120

Adding a monetary field to a
model 120
Getting ready 120
How to do it... 120
How it works... 121

Adding relational fields to a
model 122
Getting ready 122
How to do it... 123
How it works... 124
There's more... 125

Adding a hierarchy to a model 127
Getting ready 127
How to do it... 127
How it works... 128
There's more... 129

Adding constraint validations to
a model 129
Getting ready 130
How to do it... 130
How it works... 131
There's more... 132

Adding computed fields to a
model 132
Getting ready 133
How to do it... 133
How it works... 135
There's more... 136

Exposing related fields stored
in other models 137
Getting ready 137
How to do it... 137
How it works... 138
There's more... 138

Adding dynamic relations using
reference fields 138
Getting ready 139
How to do it... 139
How it works... 139

iv Table of Contents

Adding features to a model
using inheritance 140
Getting ready 140
How to do it... 141
How it works... 141

Copy model definition using
inheritance 142
Getting ready 142
How to do it... 142
How it works... 143
There's more… 144

Using delegation inheritance to
copy features to another model 144
Getting ready 144
How to do it... 145
How it works... 145
There's more... 146

Using abstract models for
reusable model features 147
Getting ready 147
How to do it... 147
How it works... 148
There's more... 149

5
Basic Server-Side Development

Technical requirements 152
Defining model methods and
using API decorators 152
Getting ready 152
How to do it... 153
How it works... 154

Reporting errors to the user 156
Getting ready 156
How to do it... 156
How it works... 157
There's more... 157

Obtaining an empty recordset
for a different model 158
Getting ready 159
How to do it... 159
How it works... 159
See also 160

Creating new records 160
Getting ready 160
How to do it... 161

How it works... 162
There's more… 163

Updating values of recordset
records 164
Getting ready 164
How to do it... 164
How it works... 165
There's more... 165

Searching for records 166
Getting ready 167
How to do it... 167
How it works... 167
There's more... 169

Combining recordsets 169
Getting ready 169
How to do it... 169
How it works... 170

Filtering recordsets 171
Getting ready 171
How to do it... 171

Table of Contents v

How it works... 172
There's more... 172

Traversing recordset relations 172
Getting ready 173
How to do it... 173
How it works... 173
There's more... 174
See also 174

Sorting recordsets 174
Getting ready 174
How to do it... 175
How it works... 175
There's more... 175

Extending the business logic
defined in
a model 176
Getting ready 176
How to do it... 177
How it works... 177

There's more... 178

Extending write() and create() 179
Getting ready 179
How to do it... 180
How it works... 181
There's more... 181

Customizing how records are
searched 182
Getting ready 183
How to do it... 183
How it works... 184
There's more... 185
See also 185

Fetching data in groups using
read_group() 186
Getting ready 186
How to do it... 187
How it works... 187

6
Managing
Module Data

Technical requirements 190
Using external IDs and
namespaces 190
How to do it... 190
How it works... 191
There's more... 192
See also 193

Loading data using XML files 193
How to do it... 194
How it works... 195
There's more... 197

Using the noupdate and
forcecreate flags 198
How to do it... 198
How it works... 198
There's more... 199
See also 199

Loading data using CSV files 200
How to do it... 200
How it works... 200
There's more... 201

vi Table of Contents

Add-on updates and data
migration 202
How to do it... 202
How it works... 203
There's more... 204
See also 205

Deleting records from XML files 205

Getting ready 205
How to do it... 205
How it works... 206

Invoking functions from XML
files 206
How to do it... 206
How it works... 207
There's more... 207

7
Debugging Modules

The auto-reload and --dev
options 210
Getting ready 210
How to do it... 210
How it works... 210

Producing server logs to help
debug methods 211
Getting ready 212
How to do it... 212
How it works... 213
There's more... 214

Using the Odoo shell to
interactively call methods 215
Getting ready 216

How to do it... 216
How it works... 217
There's more... 218

Using the Python debugger to
trace method execution 218
Getting ready 218
How to do it... 218
How it works... 221
There's more... 223
See also 223

Understanding the debug mode
options 223
How to do it... 224
How it works... 224

8
Advanced Server-Side Development Techniques

Technical requirements 230
Changing the user that
performs an action 230
Getting ready 230

How to do it... 231
How it works... 232
There's more... 233
See also 233

Table of Contents vii

Calling a method with a
modified context 233
Getting ready 234
How to do it... 234
How it works... 235
There's more... 235
See also 236

Executing raw SQL queries 236
Getting ready 236
How to do it... 236
How it works... 237
There's more... 238
See also 239

Writing a wizard to guide the
user 239
Getting ready 239
How to do it... 240
How it works... 241
There's more... 242

See also 245
Defining onchange methods 245
Getting ready 246
How to do it... 246
How it works... 247
There's more... 247

Calling onchange methods on
the server side 248

Getting ready 249
How to do it... 249
How it works... 250
See also 250

Defining onchange with the
compute method 250
Getting ready 250
How to do it... 251
How it works... 251
There's more... 251

See also 252
Defining a model based on a
SQL view 252
Getting ready 252
How to do it... 253
How it works... 254
There's more... 254

See also 255
Adding custom settings options 255
Getting ready 255
How to do it... 255
How it works... 258
There's more... 258

Implementing init hooks 259
Getting ready 259
How to do it... 260
How it works... 260

9
Backend Views

Technical requirements 262
Adding a menu item and
window actions 263
Getting ready 263

How to do it... 263
How it works... 264
There's more... 266
See also 267

viii Table of Contents

Having an action open a
specific view 267
How to do it... 267
How it works... 269
There's more... 270

Adding content and widgets to
a form view 270
How to do it... 271
How it works... 272
There's more... 275
See also 276

Adding buttons to forms 276
How to do it... 276
How it works... 276
There's more... 277

Passing parameters to forms
and actions – context 277
Getting ready 277
How to do it... 278
How it works... 278
There's more... 279
See also 280

Defining filters on record lists –
domain 281
How to do it... 281
How it works... 282
There's more... 283
See also 285

Defining list views 285
How to do it... 285
How it works... 286
There's more... 287

Defining search views 287
How to do it... 288
How it works... 289
There's more... 290

See also 291

Adding a search filter side panel 291
Getting ready 291
How to do it... 291
How it works... 292
There's more... 293

Changing existing views – view
inheritance 293
How to do it... 293
How it works... 294
There's more... 296

Defining document-style forms 298
How to do it... 298
How it works... 299

See also 300
Dynamic form elements using
attrs 300
How to do it... 301
How it works... 301
There's more... 301

Defining embedded views 301
How to do it... 302
How it works... 302
There's more... 302

Displaying attachments on the
side of the form view 303
How to do it... 304
How it works... 304
There's more... 305

Defining kanban views 305
How to do it... 305
How it works... 307
There's more... 308

See also 308

Table of Contents ix

Showing kanban cards in
columns according to their
state 308
Getting ready 308
How to do it... 309
How it works... 309
There's more... 310

Defining calendar views 310
How to do it... 310
How it works... 311
There's more... 311

Defining graph view and pivot
view 311
Getting ready 311
How to do it... 312
How it works... 312
There's more... 313

Defining the cohort view 313
Getting ready 314
How to do it... 314

How it works... 314

Defining the dashboard view 315
Getting ready 315
How to do it... 315
How it works... 316
There's more.... 317

Defining the gantt view 317
Getting ready 317
How to do it... 317
How it works... 318
There's more... 318

Defining the activity view 319
Getting ready 319
How to do it... 319
How it works... 320

Defining the map view 320
Getting ready 320
How to do it… 321
How it works... 321

10
Security Access

Technical requirements 324
Creating security groups and
assigning them to users 324
Getting ready 324
How to do it... 324
How it works... 326
There's more... 328
See also 329

Adding security access to
models 329
Getting ready 329

How to do it... 330
How it works... 330
There's more... 332
See also 332

Limiting access to fields in
models 333
Getting ready 333
How to do it... 333
How it works... 333
There's more... 334
See also 335

x Table of Contents

Limiting record access using
record rules 335
Getting ready 335
How to do it... 335
How it works... 336
There's more... 338

Using security groups to
activate features 339
Getting ready 339
How to do it... 339
How it works... 343
There's more... 344

Accessing recordsets as a
superuser 345
How to do it... 345
How it works... 346
There's more... 347

Hiding view elements and
menus based on groups 347
Getting ready 347
How to do it... 347
How it works... 348
See also 348

11
Internationalization

Installing a language and
configuring user preferences 350
How to do it... 350
How it works... 352
There's more... 352

Configuring language-related
settings 353
Getting ready 353
How to do it... 354
How it works... 354
There's more... 355

Translating texts through the
web client user interface 355
Getting ready 355
How to do it... 355
How it works... 357
There's more... 358

Exporting translation strings to
a file 358
Getting ready 358

How to do it... 359
How it works... 360
There's more... 361

Using gettext tools to make
translations easier 362
How to do it... 362
How it works... 363
There's more... 364

Importing translation files into
Odoo 364
Getting ready 364
How to do it... 364
How it works... 365

Changing the custom language
URL code for
a website 365
Getting ready 366
How to do it... 366
How it works... 367

Table of Contents xi

12
Automation, Workflows, Emails, and Printing

Technical requirements 370
Managing dynamic record
stages 370
Getting ready 370
How to do it... 371
How it works... 373
There's more... 374
See more 375

Managing kanban stages 375
Getting started 375
How to do it... 375
How it works... 377
There's more... 378
See more 378

Adding a quick create form to a
kanban card 378
Getting started 378
How to do it... 379
How it works... 380

Creating interactive kanban
cards 380
Getting started 380
How to do it... 380
How it works... 383

Adding a progress bar in
kanban views 384
Getting started 384
How to do it... 384
How it works... 385

Creating server actions 386
Getting ready 386
How to do it... 386

How it works... 388
There's more... 389

Using Python code server
actions 390
Getting ready 390
How to do it... 390
How it works... 392
There's more... 392
See more 392

Using automated actions on
time conditions 393
Getting ready 393
How to do it... 393
How it works... 395
There's more... 396
See more 396

Using automated actions on
event conditions 397
Getting ready 397
How to do it... 397
How it works... 399
There's more... 400

Creating QWeb-based PDF
reports 400
Getting ready 401
How to do it... 401
How it works... 403
There's more... 404

Managing activities from a
kanban card 405
Getting started 405
How to do it... 405
How it works... 406

xii Table of Contents

There's more… 407
See also 407

Adding a stat button to a form
view 407
Getting started 407
How to do it... 408
How it works... 409

See also 409

Enabling the archive option for
records 410
Getting started 410
How to do it... 410
How it works... 411
There's more… 411

13
Web Server Development

Technical requirements 414
Making a path accessible from
the network 414
Getting ready 414
How to do it... 414
How it works... 416
There's more... 418
See also 419

Restricting access to web-
accessible paths 419
Getting ready 419
How to do it... 419
How it works... 421
There's more... 421

Consuming parameters passed

to your handlers 422
How to do it... 422
How it works... 423
There's more... 423
See also 424

Modifying an existing handler 424
Getting ready 424
How to do it... 424
How it works… 425
There's more... 426
See also 427

Serving static resources 427
Getting ready 427
How to do it... 427
How it works… 428

14
CMS Website Development

Managing static assets 430
What are asset bundles and different
assets in Odoo? 430
Custom assets 432
How to do it... 432
How it works... 433

There's more... 433

Adding CSS and JavaScript for a
website 435
Getting ready 435
How to do it... 435

Table of Contents xiii

How it works... 437
There's more... 439

Creating or modifying
templates – QWeb 439
Getting ready 439
How to do it... 439
How it works... 441
There's more... 447
See also 448

Managing dynamic routes 448
Getting ready 448
How to do it... 449
How it works... 451
There's more... 451

Offering static snippets to the
user 452
Getting ready 452
How to do it... 452
How it works... 454
There's more... 455

Offering dynamic snippets to
the user 455
Getting ready 455
How to do it... 455
How it works... 458
There's more... 459

Getting input from website
users 460
Getting ready 460
How to do it... 461
How it works... 463
There's more... 464

Managing SEO options 464
Getting ready 464

How to do it... 465
How it works... 465
There's more... 466

Managing sitemaps for the
website 466
Getting ready... 467
How to do it... 467
How it works... 468
There's more... 468

Getting a visitor's country
information 468
Getting ready 469
How to do it... 469
How it works... 470

Tracking a marketing campaign 471
Getting ready 471
How to do it... 471
How it works... 472

Managing multiple websites 473
Getting ready 473
How to do it... 474
How it works... 475

Redirecting old URLs 476
Getting ready 476
How to do it... 476
How it works... 477

Publish management for
website-related records 478
Getting ready 478
How to do it… 478
How it works... 479
There's more… 480

xiv Table of Contents

15
Web Client Development

Technical requirements 483
Creating custom widgets 483
Getting ready 483
How to do it... 483
How it works... 487
There's more... 488

Using client-side QWeb
templates 489
Getting ready 489
How to do it... 489
How it works... 490
There's more... 491
See also 492

Making RPC calls to the server 492
Getting ready 492
How to do it... 492
How it works... 494
There's more... 494
See also 495

Creating a new view 495

Getting ready 495
How to do it... 496
How it works... 503
There's more... 506

Debugging your client-side code 507
Getting ready 507
How to do it... 507
How it works... 508
There's more... 509

Improving onboarding with
tours 510
Getting ready 510
How to do it... 510
How it works... 512

Mobile app JavaScript 513
Getting ready 513
How to do it... 513
How it works... 515
There's more... 515

16
The Odoo Web Library (OWL)

Technical requirements 518
Creating an OWL component 518
Getting ready 518
How to do it... 518
How it works... 520
There's more... 521

Managing user actions in an
OWL component 521

Getting ready 521
How to do it... 521
How it works... 523
There's more... 523

Making OWL components
reactive 523
Getting ready 524
How to do it... 524

Table of Contents xv

How it works... 526

Understanding the OWL
component life cycle 526
Getting ready 526
How to do it... 527
How it works... 528

There's more... 529

Adding an OWL field to the
form view 529
Getting ready 529
How to do it... 530
How it works... 534

17
In-App Purchasing with Odoo

Technical requirements 538
IAP concepts 538
How it works... 538
The IAP service flow 539
There's more... 540

Registering an IAP service in
Odoo 541
Getting ready 541
How to do it... 541
How it works... 544

Creating an IAP service module 545
Getting ready 545
How to do it... 546
How it works... 550

Authorizing and charging IAP
credits 551

Getting ready 551
How to do it... 552
How it works... 554
There's more... 556
See also 557

Creating an IAP client module 557
Getting ready 557
How to do it... 558
How it works... 561
There's more... 562

Displaying offers when an
account lacks credits 563
Getting ready 563
How to do it... 563
How it works... 566
There's more... 566

18
Automated Test Cases

Technical requirements 568
Adding Python test cases 569
Getting ready 569
How to do it... 569
How it works... 570

There's more... 571

Running tagged Python test
cases 571
Getting ready 571
How to do it... 572

xvi Table of Contents

How it works... 572
There's more... 573

Setting up Headless Chrome for
client-side test cases 574
How to do it... 574
How it works... 575

Adding client-side QUnit test
cases 575
Getting ready 575
How to do it... 575
How it works... 577
There's more... 579

Adding tour test cases 579
Getting ready 579
How to do it... 580
How it works... 582

Running client-side test cases

from the UI 583
How to do it... 583
How it works... 586

Debugging client-side test cases 586
Getting ready 586
How to do it... 586
How it works... 587

Generating videos/screenshots
for failed test cases 588
How to do it... 588
How it works... 589

Populating random data for
testing 589
Getting ready 589
How to do it... 590
How it works... 590
There's more… 592

19
Managing, Deploying, and Testing with
Odoo.sh

Technical requirements 594
Exploring some basic concepts
of Odoo.sh 594
What is Odoo.sh? 594
Why was Odoo.sh introduced? 595
When should you use Odoo.sh? 595
What are the features of Odoo.sh? 596

Creating an Odoo.sh account 597
Getting ready 597
How to do it... 598
How it works... 600
There's more... 601

Adding and installing custom
modules 601
Getting ready 601
How to do it... 602
How it works... 603
There's more... 604

Managing branches 604
Getting ready 605
How to do it... 605
How it works... 609

Accessing debugging options 610
How to do it... 610
There's more... 616

Table of Contents xvii

Getting a backup of your
instance 616
How to do it... 616
How it works... 617

Checking the status of your
builds 617
How to do it... 617

How it works... 618
There's more... 618

All Odoo.sh options 619
Getting ready 619
How to do it... 619
There's more... 624

20
Remote Procedure Calls in Odoo

Technical requirements 626
Logging in to/connecting Odoo
with XML-RPC 626
Getting ready 627
How to do it... 627
How it works... 628
There's more... 628

Searching/reading records
through XML-RPC 629
Getting ready 629
How to do it... 629
How it works... 631
There's more... 632

Creating/updating/deleting
records through XML-RPC 633
Getting ready 633
How to do it... 634
How it works... 636
There's more... 636

Calling methods through XML-
RPC 637
Getting ready 637
How to do it... 638
How it works... 639
There's more... 640

Logging in to/connecting Odoo
with JSON-RPC 640
Getting ready 640
How to do it... 640
How it works... 642
There's more... 642

Fetching/searching records
through JSON-RPC 643
Getting ready 643
How to do it... 644
How it works... 645
There's more... 646

Creating/updating/deleting
records through JSON-RPC 647
Getting ready 647
How to do it... 647
How it works... 649
There's more... 649

Calling methods through JSON-
RPC 650
Getting ready 650
How to do it... 650
How it works... 652

The OCA odoorpc library 652

xviii Table of Contents

Getting ready 653
How to do it... 653
How it works... 654
There's more... 655

See also 656

Generating API keys 656
How to do it... 656
How it works... 658

21
Performance Optimization

The prefetching pattern for
recordsets 660
How to do it… 660
How it works... 661
There's more... 662

The in-memory cache –
ormcache 662
How to do it... 663
How it works... 665
There's more... 665

Generating differently sized
images 666
How to do it... 666
How it works... 667
There's more... 668

Accessing grouped data 668
How to do it... 668

How it works... 669
There's more... 671
See also 671

Creating or writing multiple
records 671
How to do it... 671
How it works... 672
There's more... 673

Accessing records through
database queries 674
How to do it... 674
How it works... 675
There's more... 676

Profiling Python code 677
How to do it... 677
How it works... 678
There's more... 678

22
Point of Sale

Technical requirements 682
Adding custom JavaScript/SCSS
files 682
Getting ready 682
How to do it... 683
How it works... 684

There's more... 685

Adding an action button on the
keyboard 685
Getting ready 685
How to do it... 685
How it works... 687

Table of Contents xix

There's more... 688

Making RPC calls 689
Getting ready 689
How to do it... 689
How it works... 691
There's more... 692

Modifying the Point of Sale
screen UI 693
Getting ready 693
How to do it... 693

How it works... 695

Modifying existing business
logic 695
Getting ready 695
How to do it... 696
How it works... 697

Modifying customer receipts 698
Getting ready 698
How to do it... 698
How it works... 700

23
Managing Emails
in Odoo

Technical requirements 702
Configuring incoming and
outgoing email servers 702
Getting ready 702
How to do it... 703
How it works... 705
There's more... 706

Managing chatter on
documents 707
Getting ready 707
How to do it... 707
How it works... 708
There's more... 709

Managing activities on
documents 709
Getting ready 709
How to do it... 709
How it works... 710

There's more... 711

Sending emails using the Jinja
template 711
Getting ready 711
How to do it... 712
How it works... 714
There's more... 716

Sending emails using the QWeb
template 716
Getting ready 716
How to do it... 716
How it works... 718
There's more... 720

Managing the email alias 721
Getting ready 721
How to do it... 722
How it works... 723
There's more... 725

xx Table of Contents

Logging user changes in a
chatter 725
Getting ready 725
How to do it... 725
How it works... 726

Sending periodic digest emails 727
Getting ready 727
How to do it... 727
How it works... 729

24
Managing the
IoT Box

Technical requirements 732
Flashing the IoT Box image for
Raspberry Pi 732
Getting ready 732
How to do it... 732
How it works... 733
There's more... 734

Connecting the IoT Box with a
network 735
Getting ready 735
How to do it... 735
How it works... 737

Adding the IoT Box to Odoo 738
Getting ready 738
How to do it... 738
How it works... 741
There's more... 743

Loading drivers and listing
connected devices 743
Getting ready 744
How to do it... 744
How it works... 746

Taking input from devices 746
Getting ready 747
How to do it... 747
How it works... 748
There's more... 749

Accessing the IoT Box through
SSH 749
Getting ready 749
How it works... 750
How to do it... 750
There's more... 751

Configuring a point of sale 752
Getting ready 752
How to do it... 752
How it works... 753
There's more... 754

Sending PDF reports directly to
a printer 755
Getting ready 755
How to do it... 755
How it works... 756

Other Books You May Enjoy
Index

Preface
Odoo 14 Development Cookbook, Fourth Edition, is a complete resource that provides
various development scenarios to help you build complex business applications with the
Odoo framework. Whether you want to customize existing modules, create new ones, or
customize the website or backend web client (JS), this book covers every aspect of Odoo
development.

With its latest release, the powerful Odoo framework released a wide variety of features
for rapid application development. This updated Odoo development cookbook will help
you explore the new features in Odoo 14 and learn how to use them to develop Odoo
applications from scratch. You'll learn about the new website concepts in Odoo 14 and get
a glimpse of Odoo's new web client framework, OWL (short for Odoo Web Library).

Once you've completed the installation, you'll begin to explore the Odoo framework
with real-world examples. You'll then create a new Odoo module from the ground up
and progress to advanced framework concepts. You'll also learn how to modify existing
applications, including Point of Sale (PoS). This book isn't just limited to backend
development; you'll discover advanced JavaScript recipes for creating new views and
widgets. As you progress, you'll learn website development and become a quality Odoo
developer by studying performance optimization, debugging, and automated testing.
Finally, you'll delve into advanced concepts such as multi-website, In-App Purchasing
(IAP), Odoo.sh, IoT Box, and deployment.

You will build beautiful websites with Odoo CMS using dynamic building blocks; get
to grips with advanced concepts, such as caching, prefetching, and debugging; modify
backend JavaScript components and POS with the new OWL framework; connect and
access any object in Odoo via Remote Procedure Calls (RPC); manage, deploy, and test
an Odoo instance with Odoo.sh; configure IoT Box to add and upgrade POS hardware,
and find out how to implement IAP services.

By the end of the book, you'll have all the knowledge you need to build impressive Odoo
applications and you'll become well versed in development best practices that will come
handy when working with the Odoo framework.

xxii Preface

Who this book is for
This book is suitable for both newcomers and experienced Odoo developers who want to
develop a highly efficient business application with the Odoo framework. Basic knowledge
of Python and JavaScript is necessary to get the most out of the book.

What this book covers
Chapter 1, Installing the Odoo Development Environment, explains how to create
a development environment for Odoo, start Odoo, create a configuration file, and activate
Odoo's developer tools.

Chapter 2, Managing Odoo Server Instances, provides useful tips for working with add-ons
installed from GitHub and organizing the source code of your instance.

Chapter 3, Creating Odoo Add-On Modules, explains the structure of an Odoo add-on
module and gives a step-by-step guide for creating a simple module from scratch.

Chapter 4, Application Models, focuses on the Odoo model structure, and explains all
types of fields with their attributes. It also covers techniques to extend existing database
structures via extended modules.

Chapter 5, Basic Server-Side Development, explains various framework methods to
perform CRUD operations in Odoo. This chapter also includes different ways to inherit
and extend existing methods.

Chapter 6, Managing Module Data, shows how to ship data along with the code of your
module. It also explains how to write a migration script when a data model provided by an
add-on is modified in a new release.

Chapter 7, Debugging Modules, proposes some strategies for server-side debugging and an
introduction to the Python debugger. It also covers techniques to run Odoo in developer
mode.

Chapter 8, Advanced Server-Side Development Techniques, covers more advanced topics of
the ORM framework. It is useful for developing wizards, SQL views, installation hooks,
on-change methods, and more. This chapter also explains how to execute raw SQL queries
in the database.

Preface xxiii

Chapter 9, Backend Views, explains how to write business views for your data models and
how to call server-side methods from these views. It covers the usual views (list view, form
view, and search view), as well as some complex views (kanban, graph, calendar, pivot, and
so on).

Chapter 10, Security Access, explains how to control who has access to what in your
Odoo instance by creating security groups, writing access control lists to define what
operations are available to each group on a given model, and, if necessary, by writing
record-level rules.

Chapter 11, Internationalization, shows how language translation works in Odoo. It shows
how to install multiple languages and how to import/export translated terms.

Chapter 12, Automation, Workflows, Emails, and Printing, illustrates the different tools
available in Odoo to implement business processes for your records. It also shows how
server actions and automated rules can be used to support business rules. This also covers
the QWeb report to generate dynamic PDF documents.

Chapter 13, Web Server Development, covers the core of the Odoo web server. It shows
how to create custom URL routes to serve data on a given URL, and also shows how to
control access to these URLs.

Chapter 14, CMS Website Development, shows how to manage a website with Odoo. It also
shows how to create and modify beautiful web pages and QWeb templates. This chapter
also includes how to create dynamic building blocks with options. It includes some
dedicated recipes for managing SEO, user forms, UTM tracking, sitemaps, and fetching
visitor location information. This chapter also highlights the latest concept of a multi-
website in Odoo.

Chapter 15, Web Client Development, dives into the JavaScript part of Odoo. It covers how
to create a new field widget and make RPC calls to the server. This also includes how to
create a brand-new view from scratch. You will also learn how to create onboarding tours.

Chapter 16, The Odoo Web Library (OWL), gives introductions to the new client-side
framework called OWL. It covers the life cycle of the OWL component. It also covers
recipes to create a field widget from scratch.

Chapter 17, In-App Purchasing with Odoo, covers everything related to the latest concept
of IAP in Odoo. In this chapter, you will learn how to create client and service modules
for IAP. You will also learn how to create an IAP account and draw IAP credits from the
end user.

xxiv Preface

Chapter 18, Automated Test Cases, includes how to write and execute automated test cases.
This includes both server-side and client-side test cases. This chapter also covers tour test
cases and setting up headless Chrome to get videos for failed test cases.

Chapter 19, Managing, Deploying, and Testing with Odoo.sh, explains how to manage,
deploy, and test Odoo instances with the PaaS platform, Odoo.sh. It covers how you can
manage different types of instances, such as production, staging, and development. This
chapter also covers various configuration options for Odoo.sh.

Chapter 20, Remote Procedure Calls in Odoo, covers different ways to connect Odoo
instances from external applications. This chapter teaches you how to connect to and
access the data from an Odoo instance through XML-RPC, JSON-RPC, and the odoorpc
library.

Chapter 21, Performance Optimization, explains the different concepts and patterns
used to gain performance improvements in Odoo. This chapter includes the concept of
prefetching, ORM-cache, and profiling the code to detect performance issues.

Chapter 22, Point of Sale, covers customization in a PoS application. This includes
customization of the user interface, adding a new action button, modifying business flow,
and extending customer recipes.

Chapter 23, Managing Emails in Odoo, explains how to manage email and chatter in Odoo.
It starts by configuring mail servers and then moves to the mailing API of the Odoo
framework. This chapter also covers the Jinja2 and QWeb mail templates, chatters on the
form view, field logs, and activities.

Chapter 24, Managing IoT Box, gives you the highlights of the latest hardware of IoT Box.
This chapter covers how to configure, access, and debug IoT Box. It also includes a recipe
to integrate IoT Box with your custom add-ons.

To get the most out of this book
This book includes the installation steps for Odoo, so the only thing you require is Ubuntu
18.04 or any other Linux-based OS. On other OSes, you can use it via a virtual machine. If
you are using Windows, you can also install Ubuntu as a subsystem:

Preface xxv

This book is intended for developers who have basic knowledge of the Python
programming language, as the Odoo backend runs on Python. In Odoo, data files are
created with XML, so basic knowledge of XML is required.

This book also covers the backend JavaScript framework, PoS applications, and the
website builder, which requires basic knowledge of JavaScript, jQuery, and Bootstrap 4.
The Community Edition of Odoo is open source and freely available, but a few features,
including IoT, cohort, and the dashboard, are available only in the Enterprise Edition, so
to follow along with that recipe, you will need the Enterprise Edition.

To follow Chapter 24, Managing IoT Box, you will require the Raspberry Pi 3 Model B+,
which is available at https://www.raspberrypi.org/products/raspberry-
pi-3-model-b-plus/.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Odoo-14-Development-Cookbook-
Fourth-Edition. If there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

https://static.packt-cdn.com/downloads/9781800200319_ColorIm-
ages.pdf

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800200319_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800200319_ColorImages.pdf

xxvi Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Given that book is a browse record, we can simply recycle the first
example's function by passing book.id as a book_id parameter to give out the same
content."

A block of code is set as follows:

 @http.route('/my_library/books/json', type='json',
 auth='none')
 def books_json(self):
 records = request.env['library.book'].sudo().search([])
 return records.read(['name'])

Any command-line input or output is written as follows:

 $./odoo-bin -d mydb --i18n-export=mail.po --modules=mail

 $ mv mail.po ./addons/mail/i18n/mail.pot

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Another important usage is providing demonstration data, which is loaded when the
database is created with the Load demonstration data checkbox checked."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

Preface xxvii

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1
Installing the Odoo

Development
Environment

There are several ways to set up an Odoo development environment. This chapter
proposes one of them; you will certainly find a number of other tutorials on the web
explaining other approaches. Keep in mind that this chapter is about a development
environment that has different requirements from a production environment.

If you are new to Odoo development, you must know about certain aspects of the Odoo
ecosystem. The first recipe will give you a brief introduction to the Odoo ecosystem, and
then we will move on to the installation of Odoo for development.

In this chapter, we will cover the following recipes:

• Understanding the Odoo ecosystem

• Easy installation of Odoo from source

• Managing Odoo server databases

• Storing the instance configuration in a file

30 Installing the Odoo Development Environment

• Activating Odoo developer tools

• Updating the add-on modules list

Understanding the Odoo ecosystem
Odoo provides the developer with out-of-the-box modularity. Its powerful framework
helps the developer to build projects very quickly. There are various characters in the
Odoo ecosystem that you should be familiar with before embarking on your journey of
becoming a successful Odoo developer.

Odoo editions
Odoo comes with two different editions. The first one is the Community Edition, which
is open source, and the second one is the Enterprise Edition, which has licensing fees.
Unlike other software vendors, Odoo Enterprise Edition is just a pack of extra applications
that adds extra features or new apps to the Community Edition. Basically, the Enterprise
Edition runs on top of the Community Edition. The Community Edition comes under
the Lesser General Public License v3.0 (LGPLv3) license and comes with all of the basic
Enterprise Resource Planning (ERP) applications, such as sales, Customer Relationship
Management (CRM), invoicing, purchases, and website builder. Alternatively,
the Enterprise Edition comes with the Odoo Enterprise Edition License, which is
a proprietary license. Odoo Enterprise Edition has a number of advanced features, such
as full accounting, studio, Voice over Internet Protocol (VoIP), mobile responsive
design, e-sign, marketing automation, delivery and banking integrations, IoT, and more.
The Enterprise Edition also provides you with unlimited bugfix support. The following
diagram shows that the Enterprise Edition depends on the Community Edition, which is
why you need the latter in order to use the former:

Figure 1.1 – Differences between the Community and Enterprise Editions

Understanding the Odoo ecosystem 31

You can see a full comparison of both editions here: https://www.odoo.com/page/
editions.

Note
Odoo has the largest number of community developers, which is why you
will find a large number of third-party apps (modules) on the app store. Some
of the free apps use an Affero General Public License version 3 (AGPLv3).
You cannot use the proprietary license on your app if your application has
dependencies on such apps. Apps with an Odoo proprietary license can be
developed only on modules that have LGPL or other proprietary licenses.

Git repositories
The entire code base of Odoo is hosted on GitHub. You can post bugs/issues for stable
versions here. You can also propose a new feature by submitting Pull Requests (PR).
There are several repositories in Odoo. See the following table for more information:

Table 1.1

Every year, Odoo releases one major (Long-Term Support (LTS)) version and a few
minor versions. Minor versions are mostly used in Odoo's online SaaS service, meaning
that Odoo SaaS users get early access to these features. Major version branches have
names such as 14.0, 13.0, and 12.0, while minor version branches have names such as
saas-14.1, and saas-14.2 on GitHub. These minor versions are mostly used for Odoo's SaaS
platform. The master branch is under development and is unstable, so it is advisable not
to use this for production since it might break down your database.

Runbot
Runbot is Odoo's automated testing environment. Whenever there is a new commit in
Odoo's GitHub branch, Runbot pulls those latest changes and creates the builds for the
last four commits. Here, you can test all stable and in-development branches. You can
even play with the Enterprise Edition and its development branches.

https://www.odoo.com/page/editions
https://www.odoo.com/page/editions

32 Installing the Odoo Development Environment

Every build has a different background color, which indicates the status of the test cases.
A green background color means that all of the test cases run successfully and you can
test that branch, while a red background color means that some test cases have failed
on this branch and some features might be broken on that build. You can view the logs
for all test cases, which show exactly what happens during installation. Every build has
two databases. The all database has all of the modules installed on it, while the base
database only has base Odoo modules installed. Every build is installed with basic demo
data, and therefore you can test it quickly without extra configurations.

Note
You can access Runbot from the following URL: http://runbot.odoo.
com/runbot.

The following credentials can be used to access any Runbot build:

• Login ID: admin Password: admin

• Login ID: demo Password: demo

• Login ID: portal Password: portal

Note
This is a public testing environment, so sometimes it is possible that other users
are using/testing the same branch that you are testing.

Odoo app store
Odoo launched the app store a few years back, and this was an instant hit. Right now,
there are over 22,000+ different apps hosted there. In the app store, you will find lots
of free and paid applications for different versions. This includes specific solutions for
different business verticals, such as education, food industries, and medicine. It also
includes apps that extend or add new features to existing Odoo applications. The app
store also provides numerous beautiful themes for the Odoo website builder. In Chapter 3,
Creating Odoo Add-On Modules, we will look at how you can set pricing and currency for
your custom module.

You can access the Odoo app store via the following URL:
https://www.odoo.com/apps.

http://runbot.odoo.com/runbot
http://runbot.odoo.com/runbot
https://www.odoo.com/apps

Understanding the Odoo ecosystem 33

You can access the Odoo themes via the following URL: https://www.odoo.com/
apps/themes.

Note
Odoo has open sourced several themes with versions 13 and 14. Note that these
were paid themes in previous versions. This means that, in Odoo versions 13
and 14, you can download and use those beautiful themes at no extra cost.

Odoo Community Association
Odoo Community Association (OCA) is a non-profit organization that develops/
manages community-based Odoo modules. All OCA modules are open source and
maintained by Odoo community members. Under the OCA's GitHub account, you will
find multiple repositories for different Odoo applications. Apart from Odoo modules, it
also contains various tools, a migration library, accounting localizations, and so on.

Here is the URL for OCA's official GitHub account: https://github.com/OCA.

Official Odoo help forum
Odoo has a very powerful framework, and tons of things can be achieved just by using/
activating options or by following specific patterns. Consequently, if you run into some
technical issues or if you are not sure about some complex cases, then you can post your
query on Odoo's official help forum. Lots of developers are active on this forum, including
some official Odoo employees.

You can search your questions or post your new questions at the following URL:
https://help.odoo.com.help.odoo.com.

Odoo's eLearning platform
Recently, Odoo has launched a new eLearning platform. This platform has lots of videos
that explain how to use different Odoo applications. At the time of writing this book, this
platform does not have technical videos, just functional ones.

Here is the URL for Odoo's eLearning platform: https://www.odoo.com/slides.

https://www.odoo.com/apps/themes
https://www.odoo.com/apps/themes
https://github.com/OCA
https://help.odoo.com.help.odoo.com
https://www.odoo.com/slides

34 Installing the Odoo Development Environment

Easy installation of Odoo from source
It is highly recommended to use the Linux Ubuntu operating system for the installation
of Odoo, since this is the operating system that Odoo uses for all its tests, debugging, and
installations of Odoo Enterprise, in addition to the fact that most developers of Odoo
also use GNU/Linux distributions, and is much more likely to get support from the Odoo
community for OS-level issues that occur in GNU/Linux than Windows or macOS.

It is also recommended to develop Odoo add-on modules using the same environment
(the same distribution and the same version) as the one that will be used in production.
This will avoid nasty surprises, such as discovering on the day of deployment that a library
has a different version than expected, with a slightly different and incompatible behavior.
If your workstation is using a different OS, a good approach is to set up a Virtual Machine
(VM) on your workstation and install a GNU/Linux distribution in the VM.

Note
Ubuntu is available as an app in Microsoft Store so you can use that too, if you
do not want to switch to Ubuntu OS.

For this book, we will be using Ubuntu Server 18.04 LTS, but you can use any another
Debian GNU/Linux OS. Whatever Linux distribution you choose, you should have
some notion of how to use it from the command line, and having knowledge of system
administration will certainly not do any harm.

Getting ready
We are assuming that you have Ubuntu 18.04 up and running and that you have an
account with root access or that sudo has been configured. In the following sections, we
will install Odoo's dependencies and download Odoo's source code from GitHub.

Note
Some of the configurations require a system login username, so we will use
$(whoami) whenever a login username is required in a command line. This
is a shell command that will substitute your login in the command you are
typing.

Some operations will definitely be easier if you have a GitHub account. If you don't have
one already, go to https://github.com and create one.

https://github.com

Easy installation of Odoo from source 35

How to do it...
To install Odoo from source, perform the following steps:

1. Run the following commands to install the main dependencies:

$ sudo apt-get update

$ sudo apt install git python3-pip build-essential wget
python3-dev python3-venv python3-wheel libxslt-dev
libzip-dev libldap2-dev libsasl2-dev python3-setuptools
libpng12-0 libjpeg-dev gdebi -y

2. Download and install wkhtmltopdf:

$ wget https://github.com/wkhtmltopdf/wkhtmltopdf/
releases/download/0.12.5/wkhtmltox_0.12.5-1.trusty_amd64.
deb

$ sudo dpkg -i wkhtmltox_0.12.5-1.trusty_amd64.deb

If you find errors in a previous command, force install the dependencies with the
following command:

$ sudo apt-get install -f

3. Now, install the PostgreSQL database:

$ sudo apt install postgresql -y

4. Configure PostgreSQL:

$ sudo -u postgres createuser --superuser $(whoami)

5. Configure git:

$ git config --global user.name "Your Name"

$ git config --global user.email youremail@example.com

6. Clone the Odoo code base:

$ mkdir ~/odoo-dev

$ cd ~/odoo-dev

$ git clone -b 14.0 --single-branch --depth 1 https://
github.com/odoo/odoo.git

36 Installing the Odoo Development Environment

7. Create an odoo-14.0 virtual environment and activate it:

$ python3 -m venv ~/venv-odoo-14.0

$ source ~/venv-odoo-14.0/bin/activate

8. Install the Python dependencies of Odoo in venv:

$ cd ~/odoo-dev/odoo/

$ pip3 install -r requirements.txt

9. Create and start your first Odoo instances:

$ createdb odoo-test

$ python3 odoo-bin -d odoo-test –i base --addons-
path=addons --db-filter=odoo-test$

10. Point your browser to http://localhost:8069 and authenticate it by using
the admin account and using admin as the password.

Note
If you need RTL support, please install node and rtlcss via the following
command:

sudo apt-get install nodejs npm -y
sudo npm install -g rtlcss

How it works...
In step 1, we installed several core dependencies. These dependencies include various
tools, such as git, pip3, wget, Python setup tools, and more. These core tools will help
us install other Odoo dependencies using simple commands.

In step 2, we downloaded and installed the wkhtmltopdf package, which is used in
Odoo to print PDF documents such as sale orders, invoices, and other reports. Odoo 14.0
needs version 0.12.5 of wkhtmltopdf, and that exact version might be not included in
the current Linux distributions. Fortunately for us, the maintainers of wkhtmltopdf
provide pre-built packages for various distributions at http://wkhtmltopdf.org/
downloads.html and we have downloaded and installed it from that URL.

PostgreSQL configuration
In step 3, we installed the PostgreSQL database.

http://wkhtmltopdf.org/downloads.html
http://wkhtmltopdf.org/downloads.html

Easy installation of Odoo from source 37

In step 4, we created a new database user with the login name of your system. $(whoami)
is used to fetch your login name, and the -s option is used to give super user rights. Let's
see why we need these configurations.

Odoo uses the psycopg2 Python library to connect with a PostgreSQL database. To
access a PostgreSQL database with the psycopg2 library, Odoo uses the following values
by default:

• By default, psycopg2 tries to connect to a database with the same username as the
current user on local connections, which enables password-less authentication (this
is good for the development environment).

• The local connection uses Unix domain sockets.

• The database server listens on port 5432.

That's it! Your PostgreSQL database is now ready to be connected with Odoo.

As this is a development server, we have given --superuser rights to the user. It is
OK to give the PostgreSQL user more rights as this will be your development instance.
For a production instance, you can use the --createdb command line instead of
--superuser to restrict rights. The –superuser rights in a production server will
give additional leverage to an attacker exploiting a vulnerability in some part of the
deployed code.

If you want to use a database user with a different login, you will need to provide
a password for the user. This is done by passing the --pwprompt flag on the command
line when creating the user, in which case the command will prompt you for the password.

If the user has already been created and you want to set a password (or modify a forgotten
password), you can use the following command:

$ psql -c "alter role $(whoami) with password 'newpassword'"

If this command fails with an error message saying that the database does not exist, it
is because you did not create a database named after your login name in step 4 of this
recipe. That's fine; just add the --dbname option with an existing database name, such as
--dbname template1.

Git configuration
For the development environment, we are using Odoo sourced from GitHub. With git,
you can easily switch between different Odoo versions. Also, you can fetch the latest
changes with the git pull command.

38 Installing the Odoo Development Environment

In step 5, we configured your git user.

In step 6, we downloaded the source code from Odoo's official GitHub repository. We have
used the git clone command to download Odoo's source code. We have used a single
branch as we only want a branch for the 14.0 version. Also, we have used --depth 1 to
avoid downloading the full commit history of the branch. These options will download
the source code very quickly, but if you want, you can omit those options.

Odoo developers also propose nightly builds, which are available as tarballs and
distribution packages. The main advantage of using git clone is that you will be able to
update your repository when new bug fixes are committed in the source tree. You will also
be able to easily test any proposed fixes and track regressions so that you can make your
bug reports more precise and helpful for developers.

Note
If you have access to the enterprise edition source code, you can download that
too in a separate folder under the ~/odoo-dev directory.

Virtual environments
Python virtual environments, or venv for short, are isolated Python workspaces.
These are very useful to Python developers because they allow different workspaces with
different versions of various Python libraries to be installed, possibly on different Python
interpreter versions.

You can create as many environments as you wish using the python3 -m venv ~/
newvenv command. This will create a newvenv directory in the specified location,
containing a bin/ subdirectory and a lib/python3.6 subdirectory.

In step 7, we created a new virtual environment in the ~/venv-odoo-14.0 directory.
This will be our isolated Python environment for Odoo, and all of Odoo's Python
dependencies will be installed in this environment.

To activate the virtual environment, we need to use the source command. With the
source ~/venv-odoo-14.0/bin/activate command, we have activated the
virtual environment.

Installing Python packages
Odoo's source code has a list of Python dependencies in requirements.txt. In step 8,
we installed all those requirements via the pip3 install command.

That's it. Now you can run the Odoo instance.

Easy installation of Odoo from source 39

Starting the instance
Now comes the moment you've been waiting for. To start our first instance, in step 9, we
first created a new empty database, used the odoo-bin script, and then started the Odoo
instance with the following command:

python3 odoo-bin -d odoo-test -i base --addons-path=addons
--db-filter=odoo-test$

You can also omit python3 by using ./ before odoo-bin as it is an executable Python
script, as follows:

./odoo-bin -d odoo-test –i base --addons-path=addons
--db-filter=odoo-test$

With odoo-bin, a script with the following command-line arguments are used:

• -d database_name: Use this database by default.

• --db-filter=database_name$: Only try to connect to databases that match
the supplied regular expression. One Odoo installation can serve multiple instances
that live in separate databases, and this argument limits the available databases. The
trailing $ is important as the regular expression is used in match mode. This enables
you to avoid selecting names starting with the specified string.

• --addons-path=directory1,directory2,...: This is a comma-
separated list of directories in which Odoo will look for add-ons. This list is scanned
at instance creation time to populate the list of available add-on modules in the
instance. If you want to use Odoo's Enterprise Edition, then add its directory with
this option.

• -i base: This is used to install a base module. This is required when you have
created a database via the command line.

If you are using a database user with a database login that is different from your Linux
login, you need to pass the following additional arguments:

• --db_host=localhost: Use a TCP connection to the database server.

• --db_user=database_username: Use the specified database login.

• --db_password=database_password: This is the password for authenticating
against the PostgreSQL server.

To get an overview of all available options, use the --help argument. We will see more of
the odoo-bin script later in this chapter.

40 Installing the Odoo Development Environment

When Odoo is started on an empty database, it will first create the database structure
that's needed to support its operations. It will also scan the add-ons path to find the
available add-on modules and insert some into the initial records in the database. This
includes the admin user with the default admin password, which you will use for
authentication.

Pointing your web browser to http://localhost:8069/ leads you to the login page
of your newly created instance, as shown in the following screenshot:

Figure 1.2 – Login screen of the Odoo instance

This is due to the fact that Odoo includes an HTTP server. By default, it listens on all local
network interfaces on TCP port 8069.

Managing Odoo server databases
When working with Odoo, all the data in your instance is stored in a PostgreSQL
database. All the standard database management tools you are used to are available, but
Odoo also proposes a web interface for some common operations.

Getting ready
We are assuming that your work environment is set up and that you have an instance
running.

How to do it...
The Odoo database management interface provides tools to create, duplicate, remove,
back up, and restore a database. There is also a way to change the master password, which
is used to protect access to the database management interface.

Managing Odoo server databases 41

Accessing the database management interface
To access the database, perform the following steps:

1. Go to the login screen of your instance (if you are authenticated, log out).

2. Click on the Manage Databases link. This will navigate to http://
localhost:8069/web/database/manager (you can also point your browser
directly to that URL):

Figure 1.3 – Database manager

Setting or changing the master password
If you've set up your instance with default values and haven't modified it yet, as we will
explain in the following section, the database management screen will display a warning,
telling you that the master password hasn't been set and will advise you to set one with
a direct link:

Figure 1.4 – Master password warning

42 Installing the Odoo Development Environment

To set the master password, perform the following steps:

1. Click on the Set Master Password button. You will get a dialog box asking you to
fill in the New Master Password field:

Figure 1.5 – Setting a new master password dialog

2. Type in a non-straightforward new password and click Continue.

If the master password is already set, click on the Set Master Password button at the
bottom of the screen to change it. In the displayed dialog box, type the previous master
password and the new one and then click on Continue.

Note
The master password is the server configuration file under the admin_
password key. If the server was started without specifying a configuration
file, a new one will be generated in ~/.odoorc. Refer to the next recipe for
more information about the configuration file.

Creating a new database
This dialog box can be used to create a new database instance that will be handled by the
current Odoo server:

1. In the database management window, click on the Create Database button, which
can be found at the bottom of the screen. This will bring up the following dialog:

Managing Odoo server databases 43

Figure 1.6 – Creating a new database dialog

2. Fill in the form, as follows:

• Master Password: This is the master password for this instance.

• Database Name: Input the name of the database you wish to create.

• Email: Add your email address here; this will be your username later.

• Password: Type in the password you want to set for the admin user of the new
instance.

• Phone Number: Set the phone number (optional).

• Language: Select the language you wish to be installed by default in the new
database in the drop-down list. Odoo will automatically load the translations for the
selected language.

• Country: Select the country of the main company in the drop-down list. Selecting
this will automatically configure a few things, including company currency.

• Demo data: Check this box to obtain demonstration data. This is useful for running
interactive tests or setting up a demonstration for a customer, but it should not be
checked for a database that is designed to contain production data.

44 Installing the Odoo Development Environment

Note
If you wish to use the database to run the automated tests of the modules (refer
to Chapter 7, Debugging Modules), you need to have the demonstration data,
as the vast majority of the automated tests in Odoo depend on these records in
order to run successfully.

3. Click on the Continue button and wait for a while until the new database is
initialized. You will then be redirected to the instance and connected as the
administrator.

Troubleshooting
If you are redirected to a login screen, this is probably because the --db-
filter option was passed to Odoo and the new database name didn't match
the new database name. Note that the odoo-bin start command does
this silently, making only the current database available. To work around
this, simply restart Odoo without the start command, as shown in the
Easy installation of Odoo from source recipe of this chapter. If you have a
configuration file (refer to the Storing the instance configuration in a file recipe
later in this chapter), and then check that the db_filter option is unset or
set to a value matching the new database name.

Duplicating a database
Often, you will have an existing database, and you will want to experiment with it to try
a procedure or run a test, but without modifying the existing data. The solution here is
simple: duplicate the database and run the test on the copy. Repeat this as many times as
required:

1. In the database management screen, click on the Duplicate Database link next to
the name of the database you wish to clone:

Figure 1.7 – Duplicate Database dialog

Managing Odoo server databases 45

2. Fill in the form as follows:

• Master Password: This is the master password of the Odoo server.

• New Name: The name you want to give to the copy.

3. Click on the Continue button.

4. You can then click on the name of the newly created database in the database
management screen to access the login screen for that database.

Removing a database
When you have finished your tests, you will want to clean up the duplicated databases. To
do this, perform the following steps:

1. In the database management screen, you will find the Delete button next to the
name of the database. Clicking on it will bring up a dialog like the following
screenshot:

Figure 1.8 – Delete Database dialog

2. Fill in the form and complete the Master Password field, which is the master
password of the Odoo server.

3. Click on the Delete button.

Caution! Potential data loss!
If you selected the wrong database, and have no backup, there is no way to
recover the lost data.

46 Installing the Odoo Development Environment

Backing up a database
To create a backup, perform the following steps:

1. In the database management screen, you will find the Backup button next to the
database name. Clicking on it will bring up dialog like the following screenshot:

Figure 1.9 – Backup Database dialog

2. Fill in the form as follows:

• Master Password: This is the master password of the Odoo server.

• Backup Format: Always use zip for a production database, as this is the only real
full backup format. Only use the pg_dump format for a development database
when you don't really care about the file store.

3. Click on the Backup button. The backup file will then be downloaded to your
browser.

Restoring a database backup
If you need to restore a backup, this is what you need to do:

1. In the database management screen, you will find a Restore Database button at
the bottom of the screen. Clicking on it will bring up a dialog like the following
screenshot:

Managing Odoo server databases 47

Figure 1.10 – Restore Database dialog

2. Fill in the form as follows:

• Master Password: This is the master password of the Odoo server.

• File: This is a previously downloaded Odoo backup.

• Database Name: Provide the name of the database in which the backup will be
restored. The database must not exist on the server.

• This database might have been moved or copied: Choose This database was
moved if the original database was on another server or if it has been deleted from
the current server. Otherwise, choose This database is a copy, which is the safe
default option.

3. Click on the Continue button.

Note
It isn't possible to restore a database on top of itself. If you try to do this, you
will get an error message (Database restore error: Database already exists).
You need to remove the database first.

48 Installing the Odoo Development Environment

How it works...
These features, apart from the Change master password screen, run PostgreSQL
administration commands on the server and report back through the web interface.

The master password is a very important piece of information that only lives in the
Odoo server configuration file and is never stored in the database. There used to be a
default value of admin, but using this value is a security liability, which is well-known.
In Odoo v9 and later, this is identified as an unset master password, and you are urged to
change it when accessing the database administration interface. Even if it is stored in the
configuration file under the admin_passwd entry, this is not the same as the password of
the admin user; these are two independent passwords. The master password is set for an
Odoo server process, which itself can handle multiple database instances, each of which
has an independent admin user with their own password.

Security considerations
Remember that we are considering a development environment in this chapter.
The Odoo database management interface is something that needs to be
secured when you are working on a production server, as it gives access to
a lot of sensitive information, especially if the server hosts Odoo instances for
several different clients.

To create a new database, Odoo uses the PostgreSQL createdb utility and calls the
internal Odoo function to initialize the new database in the same way as when you start
Odoo on an empty database.

To duplicate a database, Odoo uses the --template option of createdb, passing the
original database as an argument. This essentially duplicates the structure of the template
database in the new database using internal and optimized PostgreSQL routines, which
is much faster than creating a backup and restoring it (especially when using the web
interface, which requires downloading the backup file and uploading it again).

Backup and restore operations use the pg_dump and pg_restore utilities, respectively.
When using the zip format, the backup will also include a copy of the file store that
contains a copy of the documents when you configure Odoo to not keep these in the
database, which is the default option in 14.0. Unless you change it, these files reside in
~/.local/share/Odoo/filestore.

Managing Odoo server databases 49

If the backup gets large, downloading it may fail. This is either because the Odoo server
itself is unable to handle the large file in memory or because the server is running behind
a reverse proxy because there is a limit to the size of HTTP responses that were set in the
proxy. Conversely, for the same reasons, you will likely experience issues with the database
restore operation. When you start running into these issues, it is time to invest in a more
robust external backup solution.

There's more...
Experienced Odoo developers generally don't use the database management interface and
perform operations from the command line. To initialize a new database with demo data,
for instance, the following single-line command can be used:

$ createdb testdb && odoo-bin -d testdb

The additional bonus of this command line is that you can request the installation of
add-ons while you are using, for instance, -i sale,purchase,stock.

To duplicate a database, stop the server and run the following commands:

$ createdb -T dbname newdbname

$ cd ~/.local/share/Odoo/filestore # adapt if you have changed
the data_dir

$ cp -r dbname newdbname

$ cd -

Note that, in the context of development, the file store is often omitted.

Note
The use of createdb -T only works if there are no active sessions on the
database, which means that you have to shut down your Odoo server before
duplicating the database from the command line.

To remove an instance, run the following command:

$ dropdb dbname

$ rm -rf ~/.local/share/Odoo/filestore/dbname

50 Installing the Odoo Development Environment

To create a backup (assuming that the PostgreSQL server is running locally), use the
following command:

$ pg_dump -Fc -f dbname.dump dbname

$ tar cjf dbname.tgz dbname.dump ~/.local/share/Odoo/filestore/
dbname

To restore the backup, run the following command:

$ tar xf dbname.tgz

$ pg_restore -C -d dbname dbname.dump

Caution!
If your Odoo instance uses a different user to connect to the database, you need
to pass -U username so that the correct user is the owner of the restored
database.

Storing the instance configuration in a file
The odoo-bin script has dozens of options, and it is tedious to remember them all,
as well as remembering to set them properly when starting the server. Fortunately, it is
possible to store them all in a configuration file and to only specify by hand the ones you
want to alter, for example, for development.

How to do it...
For this recipe, perform the following steps:

1. To generate a configuration file for your Odoo instance, run the following
command:

$./odoo-bin --save --config myodoo.cfg --stop-after-init

2. You can add additional options, and their values will be saved in the generated
file. All the unset options will be saved with their default value set. To get a list of
possible options, use the following command:

$./odoo-bin --help | less

This will provide you with some help about what the various options perform.

Storing the instance configuration in a file 51

3. To convert from the command-line form to the configuration form, use the long
option name, remove the leading dashes, and convert the dashes in the middle
into underscores. --without-demo then becomes without_demo. This works
for most options, but there are a few exceptions, which are listed in the following
section.

4. Edit the myodoo.cfg file (use the table in the following section for some
parameters you may want to change). Then, to start the server with the saved
options, run the following command:

$./odoo-bin -c myodoo.cfg

Note
The --config option is commonly abbreviated as -c.

How it works...
At startup, Odoo loads its configuration in three passes. First, a set of default values for all
options is initialized from the source code, then the configuration is parsed, and then any
value that's defined in the file overrides the defaults. Finally, the command-line options
are analyzed, and their values override the configuration that was obtained from the
previous pass.

As we mentioned earlier, the names of the configuration variables can be found from the
names of the command-line options by removing the leading dashes and converting the
middle dashes into underscores. There are a few exceptions to this, notably the following:

Table 1.2

52 Installing the Odoo Development Environment

Here is a list of options that are commonly set through the configuration file:

Table 1.3

Storing the instance configuration in a file 53

Here is a list of configuration options related to the database:

Table 1.4

The parsing of the configuration file by Odoo is now using the Python ConfigParser
module. However, the implementation in Odoo 11.0 has changed, and it is no longer
possible to use variable interpolation. So, if you are used to defining values for variables
from the values of other variables using the %(section.variable)s notation, you
will need to change your habits and revert to explicit values.

54 Installing the Odoo Development Environment

Some options are not used in config files, but they are widely used during development:

Table 1.5

Activating Odoo developer tools
When using Odoo as a developer, you need to know how to activate developer mode
in the web interface so that you can access the technical settings menu and developer
information. Enabling debug mode will expose several advance configuration options and
fields. These options and fields are hidden in Odoo for better usability because they are
not used on a daily basis.

How to do it...
To activate developer mode in the web interface, perform the following steps:

1. Connect to your instance and authenticate as admin.

2. Go to the Settings menu.

3. Scroll to the bottom and locate the Developer Tools section:

Figure 1.11 – Links to activate different developer modes

Activating Odoo developer tools 55

4. Click on the Activate the developer mode link.

5. Wait for the UI to reload.

Alternative way
It is also possible to activate the developer mode by editing the URL. Before the
sign, insert ?debug=1.
For example, if your current URL is http://localhost:8069/
web#menu_id=102&action=94 and you want to enable
developer mode, then you need to change that URL to http://
localhost:8069/web?debug=1#menu_id=102&action=94.
Furthermore, if you want debug mode with assets, then change the URL
to http://localhost:8069/web?debug=assets#menu_
id=102&action=94.

To exit developer mode, you can perform any one of the following operations:

• Edit the URL and write ?debug=0 in the query string.

• Use Deactivate the developer mode from the same place in the Settings menu.

• Click on the bug icon in the top menu and click on the Leave Developer Tools
option.

Lots of developers are using browser extensions to toggle debug mode. By using this, you
can toggle debug mode quickly without accessing the settings menu. These extensions are
available for Firefox and Chrome. Take a look at the following screenshot. It will help you
to identify the plugin in the Chrome store:

Figure 1.12 – Browser extension for debug mode

Note
The behavior of debug mode has changed since Odoo v13. Since v13, the status
of the debug mode is stored in session, implying that even if you have removed
?debug from the URL, debug mode will still be active.

56 Installing the Odoo Development Environment

How it works...
In developer mode, two things happen:

• You get tooltips when hovering over a field in a form view or over a column in
list view, providing technical information about the field (internal name, type,
and so on)

• A drop-down menu with a bug icon is displayed next to the user's menu in
the top-right corner, giving access to technical information about the model
being displayed, the various related view definitions, the workflow, custom filter
management, and so on.

There is a variant of developer mode – Developer mode (with assets). This mode behaves
like the normal developer mode, but additionally, the JavaScript and CSS code that's
sent to the browser is not minified, which means that the web development tools of your
browser are easy to use for debugging the JavaScript code (more on this in Chapter 15,
Web Client Development).

Caution!
Test your add-ons both with and without developer mode, as the unminified
versions of the JavaScript libraries can hide bugs that only bite you in the
minified version.

Updating the add-on modules list
When you add a new module, Odoo is unaware of the new module. In order to list the
module in Odoo, you will need to update module list. In this recipe, you will learn how to
update the app list.

Getting ready
Start your instance and connect to it using the Administrator account. After doing this,
activate developer mode (if you don't know how to activate developer mode, refer to
Chapter 1, Installing the Odoo Development Environment).

Updating the add-on modules list 57

How to do it…
To update the list of available add-on modules in your instance, you need to perform the
following steps:

1. Open the Apps menu.

2. Click on Update Apps List:

Figure 1.13 – Menu item to update the apps list

3. In the dialog, click on the Update button:

Figure 1.14 – Dialog to update the apps list

4. At the end of the update, you can click on the Apps entry to see the updated list of
available add-on modules. You will need to remove the default filter on Apps in the
search box to see all of them.

58 Installing the Odoo Development Environment

How it works…
When the Update button is clicked, Odoo will read the add-ons path configuration
variable. For each directory in the list, it will look for immediate subdirectories containing
an add-on manifest file, which is a file named __manifest__.py that's stored in the
add-on module directory. Odoo reads the manifest, expecting to find a Python dictionary.
Unless the manifest contains a key installable instance set to False, the add-on
module metadata is recorded in the database. If the module was already present, the
information is updated. If not, a new record is created. If a previously available add-on
module is not found, the record is not deleted from the list.

Note
An updated apps list is only required if you added the new add-on path after
initializing the database. If you add the new add-on path to the configuration
file before initializing the database, then there will be no need to update the
module list manually.

To summarize what we have learned so far, after installing, you can start the Odoo server
by using the following command line (if you are using a virtual environment, then you
need to activate it first):

python3 odoo-bin -d odoo-test -i base --addons-path=addons
--db-filter=odoo-test

Once you run the module, you can access Odoo from http://localhost:8069.

You can also use a configuration file to run Odoo as follows:

./odoo-bin -c myodoo.cfg

Once you start the Odoo server, you can install/update modules from the App menu.

2
Managing Odoo

Server Instances
In Chapter 1, Installing the Odoo Development Environment, we looked at how to set up
an Odoo instance using only the standard core add-ons that are shipped with source. This
chapter focuses on adding non-core or custom add-ons to an Odoo instance. In Odoo,
you can load add-ons from multiple directories. In addition, it is recommended that you
load your third-party add-ons or your own custom add-ons from separate folders to avoid
conflicts with Odoo core modules. Even Odoo Enterprise Edition is a type of add-on
directory, and you need to load this just like a normal add-ons directory.

In this chapter, we will cover the following recipes:

• Configuring the add-ons path

• Standardizing your instance directory layout

• Installing and upgrading local add-on modules

• Installing add-on modules from GitHub

• Applying changes to add-ons

• Applying and trying proposed pull requests

60 Managing Odoo Server Instances

About the terminology
In this book, we will use the terms add-on or module or app or add-on
module interchangeably. All of them refer to the Odoo app or Extension app
that can be installed in Odoo from the user interface.

Configuring the add-ons path
With the help of the addons_path parameter, you can load your own add-on modules
into Odoo. When Odoo initializes a new database, it will search for add-on modules
within directories that have been provided in the addons_path configuration
parameter. Odoo will search in these directories for the potential add-on module.

Directories listed in addons_path are expected to contain subdirectories, each of which
is an add-on module. Following initialization of the database, you will be able to install
modules that are given in these directories.

Getting ready
This recipe assumes that you have an instance ready with a configuration file generated,
as described in the Storing the instance configuration in a file recipe in Chapter 1, Installing
the Odoo Development Environment. Note that the source code of Odoo is available in ~/
odoo-dev/odoo, and the configuration file in ~/odoo-dev/myodoo.cfg.

How to do it…
To add the ~/odoo-dev/local-addons directory to addons_path of the instance,
perform the following steps:

1. Edit the configuration file for your instance, that is, ~/odoo-dev/myodoo.cfg.

2. Locate the line starting with addons_path=. By default, this should look like the
following:

addons_path = ~/odoo-dev/odoo/addons

3. Modify the line by appending a comma, followed by the name of the directory you
want to add to addons_path, as shown in the following code:

addons_path = ~/odoo-dev/odoo/addons,~/odoo-dev/local-
addons

Configuring the add-ons path 61

4. Restart your instance from the terminal:

$ ~/odoo-dev/odoo/odoo-bin -c my-instance.cfg

How it works…
When Odoo is restarted, the configuration file is read. The value of the addons_path
variable is expected to be a comma-separated list of directories. Relative paths are
accepted, but they are relative to the current working directory and therefore should be
avoided in the configuration file.

At this point, we have only listed the add-on directory in Odoo, but no add-on modules
are present in ~/odoo-dev/local-addons. And even if you add a new add-on
module to this directory, Odoo does not show this module in the user interface. For this,
you need to perform an extra operation, as explained in the next recipe, Updating the
add-on modules list.

Note
The reason behind this is that when you initialize a new database, Odoo
automatically lists your custom modules in available modules, but if you add
new modules following database initialization, then you need to manually
update the list of available modules, as shown in the Updating the add-on
modules list recipe.

There's more…
When you call the odoo-bin script for the first time to initialize a new database, you
can pass the --addons-path command-line argument with a comma-separated list of
directories. This will initialize the list of available add-on modules with all of the add-ons
found in the supplied add-ons path. When you do this, you have to explicitly include the
base add-ons directory (odoo/odoo/addons), as well as the core add-ons directory
(odoo/addons). A small difference with the preceding recipe is that the local add-ons
must not be empty; they must contain at least one sub-directory, which has the minimal
structure of an add-on module.

62 Managing Odoo Server Instances

In Chapter 3, Creating Odoo Add-On Modules, we will look at how to write your own
modules. In the meantime, here's a quick hack to produce something that will make
Odoo happy:

$ mkdir -p ~/odoo-dev/local-addons/dummy

$ touch ~/odoo-dev/local-addons/dummy/ init .py

$ echo '{"name": "dummy", "installable": False}' > \

~/odoo-dev/local-addons/dummy/ manifest .py

You can use the --save option to save the path to the configuration file:

$ odoo/odoo-bin -d mydatabase \

--add-ons-path="odoo/odoo/addons,odoo/addons,~/odoo-dev/local-
addons"

\

--save -c ~/odoo-dev/my-instance.cfg --stop-after-init

In this case, using relative paths is OK, since they will be converted into absolute paths in
the configuration file.

Note
Since Odoo only checks directories in the add-ons path for the presence of
add-ons when the path is set from the command line, not when the path is
loaded from a configuration file, the dummy module is no longer necessary.
You may, therefore, remove it (or keep it until you're sure that you won't need
to create a new configuration file).

Standardizing your instance directory layout
We recommend that your development and production environments all use a similar
directory layout. This standardization will prove helpful when you have to perform
maintenance operations, and it will also ease your day-to-day work.

This recipe creates a directory structure that groups files with similar life cycles or similar
purposes in standardized subdirectories.

How to do it… 63

Note
This recipe is only useful if you want to manage similar folder structure
development and production environments. If you do not want this, you can
skip this recipe.

Also, it is not compulsory to observe the same folder structure as in this recipe.
Feel free to alter this structure to suit your needs.

How to do it…
To create the proposed instance layout, you need to perform the following steps:

1. Create one directory per instance:

$ mkdir ~/odoo-dev/projectname

$ cd ~/odoo-dev/projectname

2. Create a Python virtualenv object in a subdirectory called env/:

$ python3 -m venv env

3. Create some subdirectories, as follows:

$ mkdir src local bin filestore logs

The functions of the subdirectories are as follows:
• src/: This contains the clone of Odoo itself, as well as the various third-party

add-on projects (we have added Odoo source code to the next step in this recipe).

• local/: This is used to save your instance-specific add-ons.

• bin/: This includes various helper executable shell scripts.

• filestore/: This is used as a file store.

• logs/ (optional): This is used to store the server log files.

4. Clone Odoo and install the requirements (refer to Chapter 1, Installing the Odoo
Development Environment, for details on this):

$ git clone -b 14.0 --single-branch --depth 1 https://
github.com/odoo/odoo.git src/odoo

$ env/bin/pip3 install -r src/odoo/requirements.txt

64 Managing Odoo Server Instances

5. Save the following shell script as bin/odoo:

#!/bin/sh ROOT=$(dirname $0)/..

PYTHON=$ROOT/env/bin/python3 ODOO=$ROOT/src/odoo/odoo-bin

$PYTHON $ODOO -c $ROOT/projectname.cfg "$@" exit $?

6. Make the script executable:

$ chmod +x bin/odoo

7. Create an empty dummy local module:

$ mkdir -p local/dummy

$ touch local/dummy/ init .py

$ echo '{"name": "dummy", "installable": False}' >\
local/dummy/ manifest .py

8. Generate a configuration file for your instance:

$ bin/odoo --stop-after-init --save \

--addons-path src/odoo/odoo/addons,src/odoo/addons,local
\

--data-dir filestore

9. Add a .gitignore file, which is used to tell GitHub to exclude given directories
so that Git will ignore these directories when you commit the code, for example,
filestore/, env/, logs/, and src/:

dotfiles, with exceptions:

.*

!.gitignore

python compiled files

*.py[co]

emacs backup files

*~

not tracked subdirectories

/env/

/src/

/filestore/

/logs/

How it works… 65

10. Create a Git repository for this instance and add the files you've added to Git:

$ git init

$ git add .

$ git commit -m "initial version of projectname"

How it works…
We generate a clean directory structure with clearly labeled directories and dedicated
roles. We are using different directories to store the following:

• The code maintained by other people (in src/)

• The local-specific code

• filestore of the instance

By having one virtualenv environment per project, we are sure that the project's
dependencies will not interfere with the dependencies of other projects that may be
running a different version of Odoo or will use different third-party add-on modules,
which require different versions of Python dependencies. This comes at the cost of a little
disk space.

In a similar way, by using separate clones of Odoo and third-party add-on modules for
our different projects, we are able to let each of these evolve independently and only
install updates on the instances that need them, hence reducing the risk of introducing
regressions.

The bin/odoo script allows us to run the server without having to remember the various
paths or activate the virtualenv environment. This also sets the configuration file
for us. You can add additional scripts in there to help you in your day-to-day work. For
instance, you can add a script to check out the different third-party projects that you need
to run your instance.

Regarding the configuration file, we have only demonstrated the bare minimum options
to set up here, but you can obviously set up more, such as the database name, the database
filter, or the port on which the project listens. Refer to Chapter 1, Installing the Odoo
Development Environment, for more information on this topic.

Finally, by managing all of this in a Git repository, it becomes quite easy to replicate the
setup on a different computer and share the development among a team.

66 Managing Odoo Server Instances

Speedup tip
To facilitate project creation, you can create a template repository containing
the empty structure, and fork that repository for each new project. This will
save you from retyping the bin/odoo script, the .gitignore file, and any
other template file you need (continuous integration configuration, README.
md, ChangeLog, and so on).

There's more...
The development of complex modules requires various configuration options, which
leads to updating the configuration file whenever you want to try any configuration
option. Updating the configuration file frequently can be a headache, and to avoid this, an
alternative way is to pass all configuration options from the command line, as follows:

1. Activate virtualenv manually:

$ source env/bin/activate

2. Go to the Odoo source directory:

$ cd src/odoo

3. Run the server:

./odoo-bin --addons-path=addons,../../local -d test-14 -i
account,sale,purchase --log-level=debug

In step 3, we passed a few configuration options directly from the command line. The
first is --add-ons-path, which loads Odoo's core add-ons directory, addons, and
your add-ons directory, local, in which you will put your own add-on modules. Option
-d will use the test-14 database or create a new database if it isn't present. The -i
option will install the account, sale, and purchase modules. Next, we passed the
log-level option and increased the log level to debug so that it will display more
information in the log.

Installing and upgrading local add-on modules 67

Note
By using the command line, you can quickly change the configuration options.
You can also see live logs in the terminal. For all available options, refer to
Chapter 1, Installing the Odoo Development Environment, or use the --help
command to view a list of all options and the description of each option.

Installing and upgrading local add-on modules
The core functionality of Odoo comes from its add-on modules. You have a wealth of
add-ons available as part of Odoo itself, as well as add-on modules that you can download
from the app store or that have been written by yourself.

In this recipe, we will demonstrate how to install and upgrade add-on modules through
the web interface and from the command line.

The main benefits of using the command line for these operations include being able to
act on more than one add-on at a time and having a clear view of the server logs as the
installation or update progresses, which is very useful when in development mode or
when scripting the installation of an instance.

Getting ready
Make sure that you have a running Odoo instance with its database initialized and the
add-ons path properly set. In this recipe, we will install/upgrade a few add-on modules.

How to do it…
There are two possible methods to install or update add-ons—you can use the web
interface or the command line.

68 Managing Odoo Server Instances

From the web interface
To install a new add-on module in your database using the web interface, perform the
following steps:

1. Connect to the instance using the Administrator account and open the
Apps menu:

Figure 2.1 – List of Odoo apps

2. Use the search box to locate the add-on you want to install. Here are a few
instructions to help you with this task:

• Activate the Not Installed filter.

• If you're looking for a specific functionality add-on rather than a broad
functionality add-on, remove the Apps filter.

• Type a part of the module name in the search box and use this as a Module filter.

• You may find that using the list view gives something more readable.

3. Click on the Install button under the module name in the card.

Note that some Odoo add-on modules have external Python dependencies. If Python
dependencies are not installed in your system, then Odoo will abort the installation and it
will show the following dialog:

Installing and upgrading local add-on modules 69

Figure 2.2 – Warning for external library dependency

To fix this, just install the relevant Python dependencies on your system.

To update a pre-installed module in your database, perform the following steps:

1. Connect to the instance using the Administrator account.

2. Open the Apps menu.

3. Click on Apps:

Figure 2.3 – Odoo apps list

4. Use the search box to locate the add-on you want to install. Here are a few tips:

• Activate the Installed filter.

• If you're looking for a specific functionality add-on rather than a broad
functionality add-on, remove the Apps filter.

• Type a part of the add-on module name into the search box and then press Enter
to use this as a Module filter. For example, type CRM and press Enter to search
CRM apps.

• You may find that using the list view gives you something more readable.

70 Managing Odoo Server Instances

5. Click on the three dots in the top right-corner of the card and click on the Upgrade
option:

Figure 2.4 – Drop-down link for upgrading the module

Activate developer mode to see the technical name of the module. See Chapter 1, Installing
the Odoo Development Environment, if you don't know how to activate developer mode:

Figure 2.5 – Application's technical names

After activating developer mode, it will show the module's technical name in red. If you
are using Odoo Community Edition, you will see some extra apps with the Upgrade
button. Those apps are Odoo Enterprise Edition apps, and in order to install/use them,
you need to purchase a license.

From the command line

To install new add-ons in your database, perform the following steps:

1. Find the names of the add-ons. This is the name of the directory containing the
manifest.py file, without the leading path.

2. Stop the instance. If you are working on a production database, make a backup.

Installing and upgrading local add-on modules 71

3. Run the following command:

$ odoo/odoo-bin -c instance.cfg -d dbname -i
addon1,addon2 \

--stop-after-init

You may omit -d dbname if this is set in your configuration file.

4. Restart the instance.

To update an already installed add-on module in your database, perform the following
steps:

1. Find the name of the add-on module to update; this is the name of the directory
containing the _manifest_.py file, without the leading path.

2. Stop the instance. If you are working on a production database, make a backup.

3. Run the following command:

$ odoo/odoo-bin -c instance.cfg -d dbname -u addon1 \

--stop-after-init

You may omit -d dbname if this is set in your configuration file.

4. Restart the instance.

How it works…
The add-on module installation and update are two closely related processes, but there are
some important differences, as highlighted in the following two sections.

Add-on installation
When you install an add-on, Odoo checks its list of available add-ons for an uninstalled
add-on with the supplied name. It also checks for the dependencies of that add-on and, if
there are any, it will recursively install them before installing the add-on.

The installation process of a single module consists of the following steps:

1. If there are any, run the add-on preinit hook.

2. Load the model definitions from the Python source code and update the database
structure, if necessary (refer to Chapter 4, Application Models, for details).

3. Load the data files of the add-on and update the database contents, if necessary
(refer to Chapter 6, Managing Module Data, for details).

72 Managing Odoo Server Instances

4. Install the add-on demo data if demo data has been enabled in the instance.

5. If there are any, run the add-on postinit hook.

6. Run a validation of the view definitions of the add-on.

7. If demo data is enabled and a test is enabled, run the tests of the add-on (refer to
Chapter 18, Automated Test Cases, for details).

8. Update the module state in the database.

9. Update the translations in the database from the add-on's translations (refer to
Chapter 11, Internationalization, for details).

Note
The preinit and postinit hooks are defined in the _manifest_.
py file using the pre_init_hook and post_init_hook keys,
respectively. These hooks are used to invoke Python functions before and after
the installation of an add-on module. To learn more about init hooks, refer
to Chapter 3, Creating Odoo Add-On Modules.

Add-on update
When you update an add-on, Odoo checks in its list of available add-on modules for
an installed add-on with the given name. It also checks for the reverse dependencies of
that add-on (these are the add-ons that depend on the updated add-on). If any, it will
recursively update them, too.

The update process of a single add-on module consists of the following steps:

1. Run the add-on module's pre-migration steps, if any (refer to Chapter 6, Managing
Module Data, for details).

2. Load the model definitions from the Python source code and update the database
structure if necessary (refer to Chapter 4, Application Models, for details).

3. Load the data files of the add-on and update the database's contents if necessary
(refer to Chapter 6, Managing Module Data, for details).

4. Update the add-on's demo data if demo data is enabled in the instance.

5. If your module has any migration methods, run the add-on post-migration steps
(refer to Chapter 6, Managing Module Data, for details).

6. Run a validation of the view definitions of the add-on.

Installing and upgrading local add-on modules 73

7. If demo data is enabled and a test is enabled, run the tests of the add-on (refer to
Chapter 18, Automated Test Cases, for details).

8. Update the module state in the database.

9. Update the translations in the database from the add-on's translations (refer to
Chapter 11, Internationalization, for details).

Note
Note that updating an add-on module that is not installed does nothing at
all. However, installing an add-on module that is already installed reinstalls
the add-on, which can have some unintended effects with some data files
that contain data that is supposed to be updated by the user and not updated
during the normal module update process (refer to the Using the noupdate and
forcecreate flags recipe in Chapter 6, Managing Module Data). There is no risk of
error from the user interface, but this can happen from the command line.

There's more…
Be careful with dependency handling. Consider an instance where you want to have the
sale, sale_stock, and sale_specific add-ons installed, with sale_specific
depending on sale_stock, and sale_stock depending on sale. To install all three,
you only need to install sale_specific, as it will recursively install the sale_stock
and sale dependencies. To update all three, you need to update sale, as this will
recursively update the reverse dependencies, sale_stock and sale_specific.

Another tricky part with managing dependencies is when you add a dependency to an
add-on that already has a version installed. Let's understand this by continuing with the
previous example. Imagine that you add a dependency on stock_dropshipping in
sale_specific. Updating the sale_specific add-on will not automatically install
the new dependency, and neither will requesting the installation of sale_specific.
In this situation, you can get very nasty error messages because the Python code of the
add-on is not successfully loaded, but the data of the add-on and the models' tables in the
database are present. To resolve this, you need to stop the instance and manually install
the new dependency.

74 Managing Odoo Server Instances

Installing add-on modules from GitHub
GitHub is a great source of third-party add-ons. A lot of Odoo partners use GitHub to
share the add-ons they maintain internally, and the Odoo Community Association
(OCA) collectively maintains several hundred add-ons on GitHub. Before you start
writing your own add-on, ensure that you check that nothing already exists that you can
use as is or as a starting point.

This recipe will show you how to clone the partner-contact project of the OCA from
GitHub and make the add-on modules it contains available in your instance.

Getting ready
Suppose you want to add new fields to the customers (partner) form. By default, the Odoo
customers model doesn't have a gender field. If you want to add a gender field, you
need to create a new module. Fortunately, someone on a mailing list tells you about the
partner_contact_gender add-on module, which is maintained by the OCA as part
of the partner-contact project.

The paths that are used in this recipe reflect the layout that was proposed in the
Standardizing your instance directory layout recipe.

How to do it…
To install partner_contact_gender, perform the following steps:

1. Go to your project's directory:

$ cd ~/odoo-dev/my-odoo/src

2. Clone the 14.0 branch of the partner-contact project in the src/ directory:

$ git clone --branch 14.0 \

https://github.com/OCA/partner-contact.git src/partner-
contact

3. Change the add-ons path to include that directory and update the add-ons list
of your instance (refer to the Configuring the add-ons path recipe and Updating
the add-on modules list recipes in this chapter). The add-ons_path line of
instance.cfg should look like this:

addons_path = ~/odoo-dev/my-odoo/src/odoo/odoo/addons, \

~/odoo-dev/my-odoo/src/odoo/addons, \

Applying changes to add-ons 75

~/odoo-dev/my-odoo/src/, \

~/odoo-dev/local-addons

4. Install the partner_contact_gender add-on (if you don't know how to install
the module, take a look at the previous recipe, Installing and upgrading local add-on
modules).

How it works…
All of the Odoo Community Association code repositories have their add-ons contained
in separate subdirectories, which is coherent in accordance with what is expected by Odoo
regarding the directories in the add-ons path. Consequently, just cloning the repository
somewhere and adding that location in the add-ons path is enough.

There's more…
Some maintainers follow a different approach and have one add-on module per
repository, living at the root of the repository. In that case, you need to create a new
directory, which you will add to the add-ons path and clone all of the add-ons from the
maintainer you need in this directory. Remember to update the add-on modules list each
time you add a new repository clone.

Applying changes to add-ons
Most add-ons that are available on GitHub are subject to change and do not follow
the rules that Odoo enforces for its stable release. They may receive bug fixes or
enhancements, including issues or feature requests that you have submitted, and these
changes may introduce database schema changes or updates in the data files and views.
This recipe explains how to install the updated versions.

Getting ready
Suppose you reported an issue with partner_contact_gender and received
a notification that the issue was solved in the last revision of the 14.0 branch of the
partner-contact project. In this case, you will want to update your instance with this
latest version.

76 Managing Odoo Server Instances

How to do it…
To apply a source modification to your add-on from GitHub, you need to perform the
following steps:

1. Stop the instance using that add-on.

2. Make a backup if it is a production instance (refer to the Manage Odoo server
databases recipe in Chapter 1, Installing the Odoo Development Environment).

3. Go to the directory where partner-contact was cloned:

$ cd ~/odoo-dev/my-odoo/src/partner-contact

4. Create a local tag for the project so that you can revert to that version in case
things break:

$ git checkout 14.0

$ git tag 14.0-before-update-$(date --iso)

5. Get the latest version of the source code:

$ git pull --ff-only

6. Update the partner_address_street3 add-on in your databases (refer to the
Installing and upgrading local add-on modules recipe).

7. Restart the instance.

How it works…
Usually, the developer of the add-on module occasionally releases the newest version of
the add-on. This update typically contains bug fixes and new features. Here, we will get
a new version of the add-on and update it in our instances.

If git pull --ff-only fails, you can revert to the previous version using the
following command:

$ git reset --hard 14.0-before-update-$(date --iso)

Then, you can try git pull (without --ff-only), which will cause a merge, but this
means that you have local changes on the add-on.

Applying and trying proposed pull requests 77

See also
If the update step breaks, refer to the Updating Odoo from Source recipe in Chapter 1,
Installing the Odoo Development Environment, for recovery instructions. Remember to
always test an update on a copy of a database production first.

Applying and trying proposed pull requests
In the GitHub world, a Pull Request (PR) is a request that's made by a developer so that
the maintainers of a project can include some new developments. Such a PR may contain
a bug fix or a new feature. These requests are reviewed and tested before being pulled into
the main branch.

This recipe explains how to apply a PR to your Odoo project in order to test an
improvement or a bug fix.

Getting ready
As in the previous recipe, suppose you reported an issue with partner_address_
street3 and received a notification that the issue was solved in a PR, which hasn't been
merged in the 14.0 branch of the project. The developer asks you to validate the fix in PR
#123. You need to update a test instance with this branch.

You should not try out such branches directly on a production database, so first create
a test environment with a copy of the production database (refer to Chapter 1, Installing
the Odoo Development Environment).

How to do it…
To apply and try out a GitHub PR for an add-on, you need to perform the following steps:

1. Stop the instance.

2. Go to the directory where partner-contact was cloned:

$ cd ~/odoo-dev/my-odoo/src/partner-contact

3. Create a local tag for the project so that you can revert to that version in case
things break:

$ git checkout 14.0

$ git tag 14.0-before-update-$(date --iso)

78 Managing Odoo Server Instances

4. Pull the branch of the pull request. The easiest way to do this is by using the
number of the PR, which should have been communicated to you by the developer.
In our example, this is PR number 123:

$ git pull origin pull/123/head

5. Update the partner_contact_gender1 add-on module in your database and
restart the instance (refer to the Installing and upgrading local add-on modules recipe
if you don't know how to update the module).

6. Test the update—try to reproduce your issue, or try out the feature you wanted.

If this doesn't work, comment on the PR page of GitHub, explaining what you did and
what didn't work so that the developer can update the PR.

If it works, say so on the PR page too; this is an essential part of the PR validation process,
and it will speed up merging in the main branch.

How it works…
We are using a GitHub feature that enables pull requests to be pulled by number using
the pull/nnnn/head branch name, where nnnn is the number of the PR. The Git pull
command will merge the remote branch in ours, applying the changes in our code base.
After this, we update the add-on module, test it, and report back to the author of the
change with regard to any failures or success.

There's more…
You can repeat step 4 of this recipe for different pull requests in the same repository if you
want to test them simultaneously. If you are really happy with the result, you can create
a branch to keep a reference to the result of the applied changes:

$ git checkout -b 14.0-custom

Using a different branch will help you remember that you are not using the version from
GitHub, but a custom one.

Applying and trying proposed pull requests 79

Note
The git branch command can be used to list all of the local branches you
have in your repository.

From then on, if you need to apply the latest revision of the 14.0 branch from GitHub,
you will need to pull it without using --ff-only:

$ git pull origin 14.0

3
Creating Odoo

Add-On Modules
Now that we have a development environment and know how to manage Odoo server
instances and databases, you can learn how to create Odoo add-on modules.

Our main goal in this chapter is to understand how an add-on module is structured
and the typical incremental workflow to add components to it. The various components
that are mentioned in the recipe names of this chapter will be covered extensively in
subsequent chapters.

In this chapter, we will cover the following recipes:

• Creating and installing a new add-on module

• Completing the add-on module manifest

• Organizing the add-on module file structure

• Adding models

• Adding menu items and views

• Adding access security

• Using the scaffold command to create a module

82 Creating Odoo Add-On Modules

Technical requirements
For this chapter, you are expected to have Odoo installed and you are also expected to
have followed the recipes in Chapter 1, Installing the Odoo Development Environment. You
are also expected to be comfortable in discovering and installing extra add-on modules, as
described in Chapter 2, Managing Odoo Server Instances.

All the code used in this chapter can be downloaded from the following GitHub
repository at https://github.com/PacktPublishing/Odoo-14-
Development-Cookbook-Fourth-Edition/tree/master/Chapter03.

What is an Odoo add-on module?
Except for the framework code, all of the code bases of Odoo are packed in the form of
modules. These modules can be installed or uninstalled at any time from the database.
There are two main purposes for these modules. Either you can add new apps/business
logic, or you can modify an existing application. Put simply, in Odoo, everything starts
and ends with modules.

Odoo is being used by companies of all sizes; each company has a different business flow
and requirements. To deal with this issue, Odoo splits the features of the application into
different modules. These modules can be loaded in the database on demand. Basically, the
user can enable/disable these features at any time. Consequently, the same software can be
adjusted for different requirements. Check out the following screenshot of Odoo modules;
the first module in the column is the main application and others are designed for adding
extra features in that app. To get a modules list grouped by the application's category, go to
the Apps menu, and apply grouping by category:

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter03

Creating and installing a new add-on module 83

Figure 3.1 – Grouping apps by category

If you plan on developing the new application in Odoo, you should create boundaries
for various features. This will be very helpful for dividing your application into different
add-on modules. Now that you know the purpose of the add-on module in Odoo, we can
start building our own add-on module.

Creating and installing a new add-on module
In this recipe, we will create a new module, make it available in our Odoo instance, and
install it.

Getting ready
To begin, we will need an Odoo instance that's ready to use.

If you followed the Easy installation of Odoo from source recipe in Chapter 1, Installing the
Odoo Development Environment, Odoo should be available at ~/odoo-dev/odoo. For
explanation purposes, we will assume this location for Odoo, although you can use any
other location of your preference.

We will also need a location to add our own Odoo modules. For the purpose of this
recipe, we will use a local-addons directory alongside the odoo directory, at ~/
odoo-dev/local-addons.

84 Creating Odoo Add-On Modules

How to do it...
As an example, for this chapter, we will create a small add-on module for managing a list
of the books for the library.

The following steps will create and install a new add-on module:

1. Change the working directory in which we will work and create the add-ons
directory where our custom module will be placed:

$ cd ~/odoo-dev

$ mkdir local-addons

2. Choose a technical name for the new module and create a directory with that name
for the module. For our example, we will use my_library:

$ mkdir local-addons/my_library

A module's technical name must be a valid Python identifier. It must begin with a
letter, and only contain letters, numbers, and underscore characters. It is preferable
that you only use lowercase letters in the module name.

3. Make the Python module importable by adding an __init__.py file:

$ touch local-addons/my_library/__init__.py

4. Add a minimal module manifest for Odoo to detect it as an add-on module. Inside
the my_library folder, create an __manifest__.py file with this line:

{'name': 'My Library'}

5. Start your Odoo instance, including our module directory, in the add-ons path:

$ odoo/odoo-bin --addons-path=odoo/addon/,local-addons/

If the --save option is added to the Odoo command, the add-ons path will be
saved in the configuration file. The next time you start the server, if no add-ons path
option is provided, this will be used.

6. Make the new module available in your Odoo instance. Log in to Odoo using
admin, enable Developer Mode in the About box, and in the Apps top menu,
select Update Apps List. Now, Odoo should know about our Odoo module:

How to do it... 85

Figure 3.2 – Dialog to update the app list

7. Select the Apps menu at the top and, in the search bar in the top-right corner, delete
the default Apps filter and search for my_library. Click on the Install button, and
the installation will be concluded.

How it works...
An Odoo module is a directory that contains code files and other assets. The directory
name that's used is the module's technical name. The name key in the module manifest is
its title.

The __manifest__.py file is the module manifest. This contains a Python dictionary
with module metadata including category, version, the modules it depends on, and a list
of the data files that it will load. In this recipe, we used a minimal manifest file, but in
real modules, we will need other important keys. These are discussed in the next recipe,
Completing the add-on module manifest.

The module directory must be Python-importable, so it also needs to have an __
init__.py file, even if it's empty. To load a module, the Odoo server will import it. This
will cause the code in the __init__.py file to be executed, so it works as an entry point
to run the module Python code. Due to this, it will usually contain import statements to
load the module Python files and submodules.

Known modules can be installed directly from the command line using the --init or
-i option. For example, if you want to install the crm and website app, you can use -i
crm,website. This list is initially set when you create a new database from the modules
found on the add-ons path provided at that time. It can be updated in an existing database
with the Update Module List menu.

86 Creating Odoo Add-On Modules

Completing the add-on module manifest
The manifest is an important piece for Odoo modules. It contains important metadata
about the add-on module and declares the data files that should be loaded.

Getting ready
We should have a module to work with, already containing a __manifest__.py
manifest file. You may want to follow the previous recipe to provide such a module to
work with.

How to do it...
We will add a manifest file and an icon to our add-on module:

1. To create a manifest file with the most relevant keys, edit the module's __
manifest__.py file so that it looks like this:

{

 'name': "My library",

 'summary': "Manage books easily",

 'description': """

 Manage Library

 ==============

 Description related to library.

 """,

 'author': "Your name",

 'website': "http://www.example.com",

 'category': 'Uncategorized',

 'version': '13.0.1',

 'depends': ['base'],

 'data': ['views/views.xml'],

 'demo': ['demo.xml'],

}

2. To add an icon for the module, choose a PNG image to use and copy it to static/
description/icon.png.

Completing the add-on module manifest 87

How it works...
The content in the manifest file is a regular Python dictionary, with keys and values. The
example manifest we used contains the most relevant keys:

• name: This is the title for the module.

• summary: This is the subtitle with a one-line description.

• description: This is a long description written in plaintext or ReStructuredText
(RST) format. It is usually surrounded by triple quotes and is used in Python
to delimit multi-line texts. For an RST quick-start reference, visit http://
docutils.sourceforge.net/docs/user/rst/quickstart.html.

• author: This is a string with the name of the authors. When there is more than
one, it is common practice to use a comma to separate their names, but note that it
should still be a string, not a Python list.

• website: This is a URL people should visit to learn more about the module or the
authors.

• category: This is used to organize modules by areas of interest. The list of the
standard category names available can be seen at https://github.com/odoo/
odoo/blob/13.0/odoo/addons/base/data/ir_module_category_
data.xml. However, it's also possible to define other new category names here.

• version: This is the module's version number. It can be used by the Odoo app
store to detect newer versions for installed modules. If the version number does not
begin with the Odoo target version (for example, 13.0), it will be automatically
added. Nevertheless, it will be more informative if you explicitly state the Odoo
target version, for example, by using 13.0.1.0.0 or 13.0.1.0, instead of
1.0.0 or 1.0.

• depends: This is a list with the technical names of the modules it directly depends
on. If your module does not depend on any other add-on module, then you should
at least add a base module. Don't forget to include any module defining XML IDs,
views, or models that are referenced by this module. That will ensure that they all
load in the correct order, avoiding hard-to-debug errors.

• data: This is a list of relative paths for the data files to load during module
installation or upgrade. The paths are relative to the module root directory. Usually,
these are XML and CSV files, but it's also possible to have YAML data files. These
are discussed in depth in Chapter 6, Managing Module Data.

http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
https://github.com/odoo/odoo/blob/13.0/odoo/addons/base/data/ir_module_category_data.xml
https://github.com/odoo/odoo/blob/13.0/odoo/addons/base/data/ir_module_category_data.xml
https://github.com/odoo/odoo/blob/13.0/odoo/addons/base/data/ir_module_category_data.xml

88 Creating Odoo Add-On Modules

• demo: This is the list of relative paths to the files with demonstration data to load.
These will only be loaded if the database was created with the Demo Data flag
enabled.

The image that is used as the module icon is the PNG file at static/description/
icon.png.

Odoo is expected to have significant changes between major versions, so modules that
have been built for one major version are not likely to be compatible with the next version
without conversion and migration work. For this reason, it's important to be sure about a
module's Odoo target version before installing it.

There's more…
Instead of having the long description in the module manifest, it's possible to have a
separate description file. Since version 8.0, it can be replaced by a README file, with either
a .txt, .rst, or an .md (markdown) extension. Otherwise, include a description/
index.html file in the module.

This HTML description will override the description that's defined in the manifest file.

There are a few more keys that are frequently used:

• licence: The default value is LGPL-3. This identifier is used for a license under
the module that is made available. Other license possibilities include AGPL-3,
Odoo Proprietary License v1.0 (mostly used in paid apps), and Other
OSI Approved Licence.

• application: If this is True, the module is listed as an application. Usually, this
is used for the central module of a functional area.

• auto_install: If this is True, it indicates that this is a glue module, which is
automatically installed when all of its dependencies are installed.

• installable: If this is True (the default value), it indicates that the module is
available for installation.

• external_dependencies: Some Odoo modules internally use Python/bin
libraries. If your modules are using such libraries, you need to put them here. This
will stop users from installing the module if the listed modules are not installed on
the host machine.

• {pre_init, post_init, uninstall}_hook: This is a Python function
hook that's called during installation/uninstallation. For a more detailed example,
refer to Chapter 8, Advanced Server-Side Development Techniques.

Organizing the add-on module file structure 89

There are a number of special keys that are used for app store listing:

• price: This key is used to set the price for your add-on module. The value of this
key should be an integer value. If a price is not set, this means your app is free.

• currency: This is the currency for the price. Possible values are USD and EUR. The
default value for this key is EUR.

• live_test_url: If you want to provide a live test URL for your app, you can use
this key to show the Live Preview button on the app store.

• iap: Set your IAP developer key if the module is used to provide an IAP service.

• images: This gives the path of images. This image will be used as a cover image in
Odoo's app store.

Organizing the add-on module file structure
An add-on module contains code files and other assets, such as XML files and images. For
most of these files, we are free to choose where to place them inside the module directory.

However, Odoo uses some conventions on the module structure, so it is advisable to
follow them.

Getting ready
We are expected to have an add-on module directory with only the __init__.py
and __manifest__.py files. In this recipe, we assume this is local-addons/my_
library.

How to do it...
To create a basic skeleton for the add-on module, perform the following steps:

1. Create directories for the code files:

$ cd local-addons/my_library

$ mkdir models

$ touch models/__init__.py

$ mkdir controllers

$ touch controllers/__init__.py

$ mkdir views

$ touch views/views.xml

$ mkdir security

90 Creating Odoo Add-On Modules

$ mkdir wizard

$ touch wizard/__init__.py

$ mkdir report

$ mkdir data

$ mkdir demo

$ mkdir i18n

2. Edit the module's top __init__.py file so that the code in the subdirectories is
loaded:

from . import models

from . import controllers

from . import wizard

This should get us started with a structure containing the most frequently used directories,
similar to this one:

my_library

├── __init__.py

├── __manifest__.py

├── controllers

│ └── __init__.py

├── data

├── demo

├── i18n

├── models

│ └── __init__.py

├── security

├── static

│ ├── description

│ └── src

│ ├─ js

│ ├─ scss

│ ├─ css

│ └ xml

├── report

├── wizard

│ └── __init__.py

Organizing the add-on module file structure 91

└──views

 └── __init__.py

How it works...
To provide some context, an Odoo add-on module can have three types of files:

• The Python code is loaded by the __init__.py files, where the .py files and
code subdirectories are imported. Subdirectories containing Python code, in turn,
need their own __init__.py file.

• Data files that are to be declared in the data and demo keys of the __
manifest__.py module manifest in order to be loaded are usually XML and CSV
files for the user interface, fixture data, and demonstration data. There may also
be YAML files, which can include some procedural instructions that are run when
the module is loaded, for instance, to generate or update records programmatically
rather than statically in an XML file.

• Web assets such as JavaScript code and libraries, CSS, SASS, and QWeb/HTML
templates. These files are used to build UI parts and manage user actions in those
UI elements. These are declared through an XML file that's extending the master
templates, which adds these assets to the web client or website pages.

The add-on files are to be organized into the following directories:

• models/ contains the backend code files, thus creating the models and their
business logic. One file per model is recommended with the same name as the
model, for example, library_book.py for the library.book model. These
are addressed in depth in Chapter 4, Application Models.

• views/ contains the XML files for the user interface, with the actions, forms,
lists, and so on. Like models, it is advised to have one file per model. Filenames for
website templates are expected to end with the _template suffix. Backend views
are explained in Chapter 9, Backend Views, and website views are addressed in
Chapter 14, CMS Website Development.

• data/ contains other data files with the module's initial data. Data files are
explained in Chapter 6, Managing Module Data.

• demo/ contains data files with demonstration data, which is useful for tests,
training, or module evaluation.

• i18n/ is where Odoo will look for the translation .pot and .po files. Refer to
Chapter 11, Internationalization, for further details. These files don't need to be
mentioned in the manifest file.

92 Creating Odoo Add-On Modules

• security/ contains the data files that define access control lists, which is usually
a ir.model.access.csv file, and possibly an XML file to define access groups
and record rules for row-level security. Take a look at Chapter 10, Security Access, for
more details on this.

• controllers/ contains the code files for the website controllers, and for modules
providing that kind of feature. Web controllers are covered in Chapter 13, Web
Server Development.

• static/ is where all web assets are expected to be placed. Unlike other directories,
this directory name is not just a convention. The files inside this directory are
public and can be accessed without a user login. This directory mostly contains
files such as JavaScript, style sheets, and images. They don't need to be mentioned
in the module manifest but will have to be referred to in the web template. This is
discussed in detail in Chapter 14, CMS Website Development.

• wizard/ contains all of the files related to wizards. In Odoo, wizards are used
to hold intermediate data. We learn more about wizards in Chapter 8, Advanced
Server-Side Development Techniques.

• report/: Odoo provides a feature to generate PDF documents such as sales
orders and invoices. This directory holds all the files related to PDF reports.
We will learn more about PDF reports in Chapter 12, Automation, Workflows,
Emails, and Printing.

When adding new files to a module, don't forget to declare them either in the __
manifest__.py file (for data files) or __init__.py file (for code files), otherwise
those files will be ignored and won't be loaded.

Adding models
Models define the data structures that will be used by our business applications. This
recipe shows you how to add a basic model to a module.

In our example, we want to manage books for a library. To do this, we need to create
a model to represent books. Each book will have a name and a list of authors.

Getting ready
We should have a module to work with. If you followed the first recipe in this chapter,
Creating and installing a new add-on module, you will have an empty module called
my_library. We will use that for our explanation.

Adding models 93

How to do it...
To add a new Model, we need to add a Python file describing it and then to upgrade the
add-on module (or install it, if this was not already done). The paths that are used are
relative to our add-on module's location (for example, ~/odoo-dev/local-addons/
my_library/):

1. Add a Python file to the models/library_book.py module with the
following code:

from odoo import models, fields

class LibraryBook(models.Model):

 _name = 'library.book'

 name = fields.Char('Title', required=True)

 date_release = fields.Date('Release Date')

 author_ids = fields.Many2many(

 'res.partner',

 string='Authors'

)

2. Add a Python initialization file with code files to be loaded by the models/__
init__.py module with the following code:

from . import library_book

3. Edit the module's Python initialization file to have the models/ directory loaded
by the module:

from . import models

4. Upgrade the Odoo module either from the command line or from the Apps menu
in the user interface. If you look closely at the server log while upgrading the
module, you should see the following line:

odoo.modules.registry: module my_library: creating or
updating database table

After this, the new library.book model should be available in our Odoo instance.
There are two ways to check whether our model has been added to the database.

First, you can check it in the Odoo user interface. Activate the developer tools and
open the menu at Settings | Technical | Database Structure | Models. Search for the
library.book model here.

94 Creating Odoo Add-On Modules

The second way is to check the table entry in your PostgreSQL database. You can search
for the library_book table in the database. In the following code example, we used
test-13.0 as our database. However, you can replace your database name in the
following command:

$ psql test-13.0

test-13.0# \d library_book;

How it works...
Our first step was to create a Python file where our new module was created.

The Odoo framework has its own Object Relational Mapping (ORM) framework. This
ORM framework provides abstraction over the PostgreSQL database. By inheriting the
Odoo Python class Model, we can create our own model (table). When a new model is
defined, it is also added to a central model registry. This makes it easier for other modules
to make modifications to it later.

Models have a few generic attributes prefixed with an underscore. The most important
one is _name, which provides a unique internal identifier that will be used throughout
the Odoo instance. The ORM framework will generate the database table based on this
attribute. In our recipe, we used _name = 'library.book'. Based on this attribute,
the ORM framework will create a new table called library_book. Note that the ORM
framework will create a table name by replacing . with _ in the value of the _name
attribute.

The model fields are defined as class attributes. We began by defining the name field of the
Char type. It is convenient for models to have this field because, by default, it is used as
the record description when referenced by other models.

We also used an example of a relational field – author_ids. This defines a many-to-
many relation between Library Books and their partners. A book can have many
authors and each author can have written many books.

There's much more to say about models, and they will be covered in depth in Chapter 4,
Application Models.

Next, we must make our module aware of this new Python file. This is done by the
__init__.py files. Since we placed the code inside the models/ subdirectory, we
need the previous __init__ file to import that directory, which should in turn contain
another __init__ file, importing each of the code files there (just one, in our case).

Changes to Odoo models are activated by upgrading the module. The Odoo server will
handle the translation of the model class into database structure changes.

Adding menu items and views 95

Although no example is provided here, business logic can also be added to these Python
files, either by adding new methods to the model's class, or by extending the existing
methods, such as create() or write(). This is addressed in Chapter 5, Basic Server-
Side Development.

Adding menu items and views
Once we have models for our data structure needs, we want a user interface so that our
users can interact with them. This recipe builds on the Library Book model from the
previous recipe and adds a menu item to display a user interface featuring list and form
views.

Getting ready
The add-on module for implementing the library.book model, which was provided
in the previous recipe, is needed. The paths that will be used are relative to our add-on
module location (for example, ~/odoo-dev/local-addons/my_library/).

How to do it...
To add a view, we will add an XML file with its definition to the module. Since it is a new
model, we must also add a menu option for the user to be able to access it.

Be aware that the sequence of the following steps is relevant, since some of them use
references to IDs that are defined in the preceding steps:

1. Create the XML file to add the data records describing the user interface, views/
library_book.xml:

<?xml version="1.0" encoding="utf-8"?>

<odoo>

<!-- Data records go here -->

</odoo>

2. Add the new data file to the add-on module manifest, __manifest__.py, by
adding it to views/library_book.xml:

{

 'name': "My Library",

 'summary': "Manage books easily",

 'depends': ['base'],

96 Creating Odoo Add-On Modules

 'data': ['views/library_book.xml'],

}

3. Add the action that opens the views in the library_book.xml file:

<record id='library_book_action' model='ir.actions.act_
window'>

 <field name="name">Library Books</field>

 <field name="res_model">library.book</field>

 <field name="view_mode">tree,form</field>

</record>

4. Add the menu items to the library_book.xml file, making it visible to users:

<menuitem name="My Library" id="library_base_menu" />

<menuitem name="Books" id="library_book_menu"
parent="library_base_menu" action="library_book_action"/>

5. Add a custom form view to the library_book.xml file:

<record id="library_book_view_form" model="ir.ui.view">

 <field name="name">Library Book Form</field>

 <field name="model">library.book</field>

 <field name="arch" type="xml">

 <form>

 <group>

 <group>

 <field name="name"/>

 <field name="author_ids"
widget="many2many_tags"/>

 </group>

 <group>

 <field name="date_release"/>

 </group>

 </group>

 </form>

 </field>

</record>

Adding menu items and views 97

6. Add a custom tree (list) view to the library_book.xml file:

<record id="library_book_view_tree" model="ir.ui.view">

 <field name="name">Library Book List</field>

 <field name="model">library.book</field>

 <field name="arch" type="xml">

 <tree>

 <field name="name"/>

 <field name="date_release"/>

 </tree>

 </field>

</record>

7. Add custom Search options to the library_book.xml file:

<record id="library_book_view_search" model="ir.ui.view">

 <field name="name">Library Book Search</field>

 <field name="model">library.book</field>

 <field name="arch" type="xml">

 <search>

 <field name="name"/>

 <field name="author_ids"/>

 <filter string="No Authors"

 name="without_author"

 domain="[('author_ids','=',False)]"/>

 </search>

 </field>

</record>

When a new model is added in Odoo, the user doesn't have any access rights by default.
We must define access rights for the new model in order to get access. In our example,
we haven't defined any access rights, so the user doesn't have access to our new model.
Without access, our menus and views are not visible either. Luckily, there is one shortcut!
By switching to superuser mode, you can see menus for our app without having access
rights.

98 Creating Odoo Add-On Modules

Accessing Odoo as a superuser
By converting the admin user into a superuser type, you can bypass the access rights
and therefore access menus and views without giving default access rights. To convert
the admin user into a superuser, activate Developer Mode. After doing this, from the
developer tool options, click on the Become Superuser option.

The following screenshot has been provided as reference:

Figure 3.3 – Option to activate superuser mode

After becoming a superuser, your menu will have a striped background, as shown in the
following screenshot:

Figure 3.4 – Superuser mode activated

Adding menu items and views 99

If you try and upgrade the module now, you should be able to see a new menu option
(you might need to refresh your web browser). Clicking on the Books menu will open
a list view for book models, as shown in the following screenshot:

Figure 3.5 – Menu to access books

How it works...
At a low level, the user interface is defined by records stored in special models. The first
two steps create an empty XML file to define the records to be loaded, and then add them
to the module's list of data files to be installed.

Data files can be placed anywhere inside the module directory, but the convention is for
the user interface to be defined inside a views/ subdirectory. Usually, the name of these
files is based on the name of the model. In our case, we are creating the user interface for
the library.book model, so we created the views/library_book.xml file.

The next step is to define a window action to display the user interface in the main area
of the web client. The action has a target model defined by res_model, and the name
attribute is used to display the title to the user when the user opens the action. These are
just the basic attributes. The window action supports additional attributes, giving much
more control over how the views are rendered, such as what views are to be displayed,
adding filters on the records that are available, or setting default values. These are
discussed in detail in Chapter 9, Backend Views.

In general, data records are defined using a <record> tag, and we created a record for
the ir.actions.act_window model in our example. This will create the window
actions.

Similarly, menu items are stored in the ir.ui.menu model, and we can create these
with the <record> tag. However, there is a shortcut tag called <menuitem> available
in Odoo, so we used this in our example.

100 Creating Odoo Add-On Modules

These are the menu item's main attributes:

• name: This is the menu item text to be displayed.

• action: This is the identifier of the action to be executed. We use the ID of the
window action we created in the previous step.

• sequence: This is used to set the order in which the menu items of the same level
are presented.

• parent: This is the identifier for the parent menu item. Our example menu item
had no parent, meaning that it is to be displayed at the top of the menu.

• web_icon: This attribute is used to show the icon for the menu. This icon is only
displayed in the Odoo Enterprise Edition.

At this point, we haven't defined any of the views in our module. However, if you upgrade
your module at this stage, Odoo will automatically create them on the fly. Nevertheless, we
will surely want to control how our views look, so, in the next two steps, a form and a tree
view are created.

Both views are defined with a record on the ir.ui.view model. The attributes we used
are as follows:

• name: This is a title identifying the view. In the source code of Odoo, you will find
the XML ID repeated here, but if you want, you can add a more human readable
title as a name.

If the name field is omitted, Odoo will generate one using the model name and
the type of view. This is perfectly fine for the standard view of a new model. It is
recommended to have a more explicit name when you are extending a view, as
this will make your life easier when you are looking for a specific view in the user
interface of Odoo.

• model: This is the internal identifier of the target model, as defined in its _name
attribute.

• arch: This is the view architecture, where its structure is actually defined. This is
where different types of views differ from each other.

Form views are defined with a top <form> element, and its canvas is a two-column grid.
Inside the form, <group> elements are used to vertically compose fields. Two groups
result in two columns with fields, which are added using the <field> element. Fields use
a default widget according to their data type, but a specific widget can be used with the
help of the widget attribute.

Adding access security 101

Tree views are simpler; they are defined with a top <tree> element that contains
<field> elements for the columns to be displayed.

Finally, we added a Search view to expand the search option in the box at the top-right.
Inside the <search> top-level tag, we can have the <field> and <filter> elements.
Field elements are additional fields that can be searched from the input given in the search
view. Filter elements are predefined filter conditions that can be activated with a click.
These subjects are discussed in detail in Chapter 9, Backend Views.

Adding access security
When adding a new data model, you need to define who can create, read, update, and
delete records. When creating a totally new application, this can involve defining new user
groups. Consequently, if a user doesn't have these access rights, then Odoo will not display
your menus and views. In the previous recipe, we accessed our menu by converting an
admin user into a superuser. After completing this recipe, you will be able to access
menus and views for our Library module directly as an admin user.

This recipe builds on the Library Book model from the previous recipes and
defines a new security group of users to control who can access or modify the records
of the books.

Getting ready
The add-on module that implements the library.book model, which was provided
in the previous recipe, is needed because, in this recipe, we will add the security rules for
it. The paths that are used are relative to our add-on module location (for example, ~/
odoo-dev/local-addons/my_library/).

How to do it...
The security rules we want to add in this recipe are as follows:

• Everyone will be able to read library book records.

• A new group of users called Librarians will have the right to create, read, update,
and delete book records.

102 Creating Odoo Add-On Modules

To implement this, you need to perform the following steps:

1. Create a file called security/groups.xml with the following content:

<?xml version="1.0" encoding="utf-8"?>

<odoo>

 <record id="group_librarian" model="res.groups">

 <field name="name">Librarians</field>

 <field name="users" eval="[(4, ref('base.user_
admin'))]"/>

 </record>

</odoo>

2. Add a file called security/ir.model.access.csv with the following
content:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink

acl_book,library.book default,model_library_book,,1,0,0,0

acl_book_librarian,library.book_librarian,model_library_
book,group_librarian,1,1,1,1

3. Add both files in the data entry of __manifest__.py:

...

 'data': [

 'security/groups.xml',

 'security/ir.model.access.csv',

 'views/library_book.xml'

],

 # ...

The newly defined security rules will be in place once you update the add-on in your
instance.

Using the scaffold command to create a module 103

How it works…
We are providing two new data files that we add to the add-on module's manifest so that
installing or updating the module will load them in the database:

• The security/groups.xml file defines a new security group by creating a
res.groups record. We also gave librarians' rights to the admin user by using its
reference ID, base.user_admin, so that the admin user will have rights for the
library.book model.

• The ir.model.access.csv file associates permissions on models with groups.
The first line has an empty group_id:id column, which means that the rule
applies to everyone. The last line gives all privileges to members of the group we just
created.

The order of the files in the data section of the manifest is important. The file for creating
the security groups must be loaded before the file listing the access rights, as the access
right's definition depends on the existence of the groups. Since the views can be specific to
a security group, we recommend putting the group's definition file in the list to be on the
safer side.

See also
This book has a chapter dedicated to security. For more information on security, refer to
Chapter 10, Security Access.

Using the scaffold command to create
a module
When creating a new Odoo module, there is some boilerplate code that needs to be set up.
To help quick-start new modules, Odoo provides the scaffold command.

This recipe shows you how to create a new module using the scaffold command, which
will put in place a skeleton of the file for directories to use.

Getting ready
We will create the new add-on module in a custom module directory, so we need Odoo
installed and a directory for our custom modules. We will assume that Odoo is installed at
~/odoo-dev/odoo and that our custom modules will be placed in the ~/odoo-dev/
local-addons directory.

104 Creating Odoo Add-On Modules

How to do it...
We will use the scaffold command to create boilerplate code. Perform the following
steps to create new a module using the scaffold command:

1. Change the working directory to where we will want our module to be. This can
be whatever directory you choose, but it needs to be within an add-on path to be
useful. Following the directory choices that we used in the previous recipe, this
should be as follows:

$ cd ~/odoo-dev/local-addons

2. Choose a technical name for the new module, and use the scaffold command
to create it. For our example, we will choose my_module:

$ ~/odoo-dev/odoo/odoo-bin scaffold my_module

3. Edit the __manifest__.py default module manifest provided and change the
relevant values. You will surely want to at least change the module title in the
name key.

This is what the generated add-on module should look like:

$ tree my_module

my_module/

├── __init__.py

├── __manifest__.py

├── controllers

│ ├── __init__.py

│ └── controllers.py

├── demo

│ └── demo.xml

├── models

│ ├── __init__.py

│ └── models.py

├── security

│ └── ir.model.access.csv

└── views

 ├── templates.xml

 └── views.xml

Using the scaffold command to create a module 105

5 directories, 10 files

You should now edit the various generated files and adapt them to the purpose of your
new module.

How it works...
The scaffold command creates the skeleton for a new module based on a template.

By default, the new module is created in the current working directory, but we can provide
a specific directory to create the module, passing it as an additional parameter.

Consider the following example:

$ ~/odoo-dev/odoo/odoo-bin scaffold my_module ~/odoo-dev/local-
addons

A default template is used, but a theme template is also available for website theme
authoring. To choose a specific template, the -t option can be used. We are also allowed
to use a path for a directory with a template.

This means that we can use our own templates with the scaffold command. The
built-in templates can be found in the /odoo/cli/templates Odoo subdirectory. To
use our own template, we can use something like the following command:

$ ~/odoo-dev/odoo/odoo-bin scaffold -t path/to/template my_
module

By default, Odoo has two templates in the /odoo/cli/templates directory. One is
the default template, and the second is the theme template. However, you can create
your own templates or use it with -t, as shown in the preceding command.

4
Application Models

The recipes in this chapter will make small additions to an existing add-on module. In
the previous chapter, we registered our add-on module in the Odoo instance. In this
chapter, we will dive deeply into the database side of the module. We will add a new model
(database table), new fields, and constraints. We will also examine the use of inheritance
in Odoo. We will be using the module we created in the recipes in Chapter 3, Creating
Odoo Add-On Modules.

In this chapter, we will cover the following recipes:

• Defining the model representation and order

• Adding data fields to a model

• Using a float field with configurable precision

• Adding a monetary field to a model

• Adding relational fields to a model

• Adding a hierarchy to a model

• Adding constraint validations to a model

• Adding computed fields to a model

108 Application Models

• Exposing related fields stored in other models

• Adding dynamic relations using reference fields

• Adding features to a model using inheritance

• Using abstract models for reusable model features

• Using delegation inheritance to copy features to another model

Technical requirements
To follow the examples in this chapter, you should have the module that we created in
Chapter 3, Creating Odoo Add-On Modules, and the module must be ready to use.

All the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter04.

Defining the model representation and order
Models have structural attributes for defining their behavior. These are prefixed with
an underscore. The most important attribute of the model is _name, as this defines the
internal global identifier. Internally, Odoo uses this _name attribute to create a database
table. For example, if you provide _name="library.book", then the Odoo ORM will
create the library_book table in the database. And that's why the _name attribute
must be unique across Odoo.

There are two other attributes that we can use on a model:

• _rac_name is used to set the field that's used as a representation or title for the
records.

• The other one is _order, which is used to set the order in which the records are
presented.

Getting ready
This recipe assumes that you have an instance ready with the my_library module, as
described in Chapter 3, Creating Odoo Add-On Modules.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter04

Defining the model representation and order 109

How to do it...
The my_library instance should already contain a Python file called models/
library_book.py, which defines a basic model. We will edit it to add a new class-level
attribute after _name:

1. To add a user-friendly title to the model, add the following code:

_description = 'Library Book'

2. To sort the records first (from the newest to the oldest, and then by title), add the
following code:

_order = 'date_release desc, name'

3. To use the short_name field as the record representation, add the following code:

_rec_name = 'short_name'

short_name = fields.Char('Short Title', required=True)

4. Add the short_name field in the form view so that it can display the new field in
the view:

<field name="short_name"/>

When we're done, our library_book.py file should appear as follows:
from odoo import models, fields

class LibraryBook(models.Model):

 _name = 'library.book'

 _description = 'Library Book'

 _order = 'date_release desc, name'

 _rec_name = 'short_name'

 name = fields.Char('Title', required=True)

 short_name = fields.Char('Short Title',
required=True)

 date_release = fields.Date('Release Date')

 author_ids = fields.Many2many('res.partner',
string='Authors')

Your <form> view in the library_book.xml file will look as follows:
<form>

 <group>

110 Application Models

 <group>

 <field name="name"/>

 <field name="author_ids" widget="many2many_
tags"/>

 </group>

 <group>

 <field name="short_name"/>

 <field name="date_release"/>

 </group>

 </group>

</form>

We should then upgrade the module to activate these changes in Odoo. To update the
module, you can open the Apps menu, search for the my_library module, and then
update the module via a dropdown, as in the following screenshot:

Figure 4.1 – Option to update the module

Alternatively, you can also use the -u my_library command in the command line.

How it works...
The first step adds a more user-friendly title to the model's definition. This is not
mandatory, but can be used by some add-ons. For instance, it is used by the tracking
feature in the mail add-on module for the notification text when a new record is
created. For more details, refer to Chapter 23, Managing Emails in Odoo. If you don't use
_description for your model, in that case, Odoo will show a warning in the logs.

By default, Odoo orders the records using the internal id value (autogenerated primary
key). However, this can be changed so that we can use the fields of our choice by providing
an _order attribute with a string containing a comma-separated list of field names.
A field name can be followed by the desc keyword to sort it in descending order.

Defining the model representation and order 111

Important note
Only fields stored in the database can be used. Non-stored computed fields
can't be used to sort records.

The syntax for the _order string is similar to SQL ORDER BY clauses, although it's
stripped down. For instance, special clauses, such as NULLS FIRST, are not allowed.

Model records use a representation when they are referenced from other records. For
example, a user_id field with the value 1 represents the Administrator user. When
displayed in a form view, Odoo will display the username, rather than the database ID. In
short, _rec_name is the display name of the record used by Odoo GUI to represent that
record. By default, the name field is used. In fact, this is the default value for the _rec_
name attribute, which is why it's convenient to have a name field in our models. In our
example, the library.book model has a name field, so, by default, Odoo will use it as
a display name. We want to change this behavior in step 3; we have used short_name
as the _rec_name. After that, library.book model's display name is changed form
name to short_name and Odoo GUI will use the value of short_name to represent
the record.

Warning
If your model doesn't have a name field and you haven't specified _rec_
name either in that case, your display name will be a combination of the model
name and record ID, like this: (library.book, 1).

Since we have added a new field, short_name, to the model, the Odoo ORM will add
a new column to the database table, but it won't display this field in the view. To do this,
we need to add this field to the form view. In step 4, we added the short_name field to
the form view.

There's more...
Record representation is available in a magic display_name computed field and has
been automatically added to all models since version 8.0. Its values are generated using
the name_get() model method, which was already in existence in the previous versions
of Odoo.

The default implementation of name_get() uses the _rec_name attribute to find
which field holds the data, which is used to generate the display name. If you want your
own implementation for the display name, you can override the name_get() logic
to generate a custom display name. The method must return a list of tuples with two
elements: the ID of the record and the Unicode string representation for the record.

112 Application Models

For example, to have the title and its release date in the representation, such as Moby
Dick (1851-10-18), we can define the following:

Take a look at the following example. This will add a release date in the record's name:

def name_get(self):

 result = []

 for record in self:

 rec_name = "%s (%s)" % (record.name, record.date_
release)

 result.append((record.id, rec_name))

 return result

After adding the preceding code, your display_name record will be updated. Suppose
you have a record with the name Odoo Cookbook and a release date of 19-04-2019, then
the preceding name_get() method will generate a name such as Odoo Cookbook
(19-04-2019).

Adding data fields to a model
Models are meant to store data, and this data is structured in fields. Here, you will learn
about the several types of data that can be stored in fields, and how to add them to
a model.

Getting ready
This recipe assumes that you have an instance ready with the my_library add-on
module available, as described in Chapter 3, Creating Odoo Add-On Modules.

How to do it...
The my_library add-on module should already have models/library_book.py,
defining a basic model. We will edit it to add new fields:

1. Use the minimal syntax to add fields to the Library Books model:

from odoo import models, fields

class LibraryBook(models.Model):

 # ...

 short_name = fields.Char('Short Title')

 notes = fields.Text('Internal Notes')

Adding data fields to a model 113

 state = fields.Selection(

 [('draft', 'Not Available'),

 ('available', 'Available'),

 ('lost', 'Lost')],

 'State')

 description = fields.Html('Description')

 cover = fields.Binary('Book Cover')

 out_of_print = fields.Boolean('Out of Print?')

 date_release = fields.Date('Release Date')

 date_updated = fields.Datetime('Last Updated')

 pages = fields.Integer('Number of Pages')

 reader_rating = fields.Float(

 'Reader Average Rating',

 digits=(14, 4), # Optional precision decimals,

)

2. We have added new fields to the model. We still need to add these fields to the form
view in order to reflect these changes in the user interface. Refer to the following
code to add fields in the form view:

<form>

 <group>

 <group>

 <field name="name"/>

 <field name="author_ids" widget="many2many_
tags"/>

 <field name="state"/>

 <field name="pages"/>

 <field name="notes"/>

 </group>

 <group>

 <field name="short_name"/>

 <field name="date_release"/>

 <field name="date_updated"/>

 <field name="cover" widget="image" class="oe_
avatar"/>

 <field name="reader_rating"/>

 </group>

114 Application Models

 </group>

 <group>

 <field name="description"/>

 </group>

</form>

Upgrading the module will make these changes effective in the Odoo model.

Take a look at the following samples of different fields. Here, we have used different
attributes on various types in the fields. This will give you a better idea of field declaration:

short_name = fields.Char('Short Title',translate=True,
index=True)

state = fields.Selection(

 [('draft', 'Not Available'),

 ('available', 'Available'),

 ('lost', 'Lost')],

 'State', default="draft")

description = fields.Html('Description', sanitize=True, strip_
style=False)

pages = fields.Integer('Number of Pages',

 groups='base.group_user',

 states={'lost': [('readonly', True)]},

 help='Total book page count', company_dependent=False)

How it works...
Fields are added to models by defining an attribute in their Python classes. The
non-relational field types that are available are as follows:

• Char is used for string values.

• Text is used for multiline string values.

• Selection is used for selection lists. This has a list of values and description pairs.
The value that is selected is what gets stored in the database, and it can be a string or
an integer. The description is automatically translatable.

Adding data fields to a model 115

Important note
In fields of the Selection type, you can use integer keys, but you must be
aware that Odoo interprets 0 as not having been set internally, and will not
display the description if the stored value is zero. This can happen, so you will
need to take this into account.

• Html is similar to the text field, but is expected to store rich text in an HTML
format.

• Binary fields store binary files, such as images or documents.

• Boolean stores True/False values.

• Date stores date values. They are stored in the database as dates. The ORM handles
them in the form of Python date objects. You can use fields.Date.today()
to set the current date as a default value in the date field.

• Datetime is used for datetime values. They are stored in the database in a
naive datetime, in UTC time. The ORM handles them in the form of Python
datetime objects. You can use fields.Date.now() to set the current time as a
default value in the datetime field.

• The Integer fields need no further explanation.

• The Float fields store numeric values. Their precision can optionally be defined
with a total number of digits and decimal digit pairs.

• Monetary can store an amount in a certain currency. This will also be explained in
the Adding a monetary field recipe in this chapter.

The first step of this recipe shows the minimal syntax to add to each field type. The field
definitions can be expanded to add other optional attributes, as shown in step 2.

Here's an explanation for the field attributes that were used:

• string is the field's title, and is used in UI view labels. It is optional. If not set, a
label will be derived from the field name by adding a title case and replacing the
underscores with spaces.

• translate, when set to True, makes the field translatable. It can hold a different
value, depending on the user interface language.

• default is the default value. It can also be a function that is used to calculate the
default value; for example, default=_compute_default, where _compute_
default is a method that was defined on the model before the field definition.

116 Application Models

• help is an explanation text that's displayed in the UI tooltips.

• groups makes the field available only to some security groups. It is a string
containing a comma-separated list of XML IDs for security groups. This is
addressed in more detail in Chapter 10, Security Access.

• states allows the user interface to dynamically set the value for the readonly,
required, and invisible attributes, depending on the value of the state field.
Therefore, it requires a state field to exist and be used in the form view (even if it
is invisible). The name of the state attribute is hardcoded in Odoo and cannot be
changed.

• copy flags whether the field value is copied when the record is duplicated. By
default, it is True for non-relational and Many2one fields, and False for
One2many and computed fields.

• index, when set to True, creates a database index for the field, which sometimes
allows for faster searches. It replaces the deprecated select=1 attribute.

• The readonly flag makes the field read-only by default in the user interface.

• The required flag makes the field mandatory by default in the user interface.

The various whitelists that are mentioned here are defined in odoo/tools/
mail.py.

• The company_dependent flag makes the field store different values for each
company. It replaces the deprecated Property field type.

• group_operator is an aggregate function used to display results in the group
by mode. Possible values for this attribute include count, count_distinct,
array_agg, bool_and, bool_or, max, min, avg, and sum. Integer, float, and
monetary field types have the default value sum for this attribute.

• The sanitize flag is used by HTML fields and strips its content from potentially
insecure tags. Using this performs a global cleanup of the input.

If you need finer control in HTML sanitization, there are a few more attributes that you
can use, which only work if sanitize is enabled:

• sanitize_tags=True, to remove tags that are not part of a whitelist (this is the
default)

• sanitize_attributes=True, to remove attributes of the tags that are not part
of a whitelist

• sanitize_style=True, to remove style properties that are not part of
a whitelist

Adding data fields to a model 117

• strip_style=True, to remove all style elements

• strip_class=True, to remove the class attributes

Finally, we updated the form view according to the newly added fields in the model. We
placed <field> tags in an arbitrary manner here, but you can place them anywhere you
want. Form views are explained in more detail in Chapter 9, Backend Views.

There's more...
The Selection field also accepts a function reference as its selection attribute
instead of a list. This allows for dynamically generated lists of options. You can find an
example relating to this in the Adding dynamic relations using reference fields recipe in this
chapter, where a selection attribute is also used.

The Date and Datetime field objects expose a few utility methods that can be
convenient.

For Date, we have the following:

• fields.Date.to_date(string_value) parses the string into a date object.

• fields.Date.to_string(date_value) converts the python Date object as
a string.

• fields.Date.today() returns the current day in a string format. This is
appropriate to use for default values.

• fields.Date.context_today(record, timestamp) returns the day of
the timestamp (or the current day, if timestamp is omitted) in a string format,
according to the time zone of the record's (or record set's) context.

For Datetime, we have the following:

• fields.Datetime.to_datetime(string_value) parses the string into
a datetime object.

• fields.Datetime.to_string(datetime_value) converts the datetime
object to a string.

• fields.Datetime.now() returns the current day and time in a string format.
This is appropriate to use for default values.

• fields.Datetime.context_timestamp(record, timestamp) converts
a timestamp-naive datetime object into a time zone-aware datetime object
using the time zone in the context of record. This is not suitable for default values,
but can be used for instances when you're sending data to an external system.

118 Application Models

Other than the basic fields, we also have relational fields: Many2one, One2many, and
Many2many. These are explained in the Adding relational fields to a model recipe in this
chapter.

It's also possible to have fields with automatically computed values, defining the
computation function with the compute field attribute. This is explained in the Adding
computed fields to a model recipe.

A few fields are added by default in Odoo models, so we should not use these names for
our fields. These are the id field, for the record's automatically generated identifier, and
a few audit log fields, which are as follows:

• create_date is the record creation timestamp.

• create_uid is the user who created the record.

• write_date is the last recorded timestamp edit.

• write_uid is the user who last edited the record.

The automatic creation of these log fields can be disabled by setting the _log_
access=False model attribute.

Another special column that can be added to a model is active. It must be a Boolean
field, allowing users to mark records as inactive. It is used to enable the archive/unarchive
feature on the records. Its definition is as follows:

active = fields.Boolean('Active', default=True)

By default, only records with active set to True are visible. To retrieve them, we
need to use a domain filter with [('active', '=', False)]. Alternatively, if the
'active_test': False value is added to the environment's context, the ORM will
not filter out inactive records.

In some cases, you may not be able to modify the context to get both the active and the
inactive records. In this case, you can use the ['|', ('active', '=', True),
('active', '=', False)] domain.

Caution
[('active', 'in' (True, False))] does not work as you might
expect. Odoo is explicitly looking for an ('active', '=', False)
clause in the domain. It will default to restricting the search to active records
only.

Using a float field with configurable precision 119

Using a float field with configurable precision
When using float fields, we may want to let the end user configure the decimal
precision that is to be used. In this recipe, we will add a Cost Price field to the
Library Books model, with the user-configurable decimal precision.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
Perform the following steps to apply dynamic decimal precision to the model's cost_
price field:

1. Activate Developer Mode from the link in the Settings menu (refer to the
Activating the Odoo developer tools recipe in Chapter 1, Installing the Odoo
Development Environment). This will enable the Settings | Technical menu.

2. Access the decimal precision configurations. To do this, open the Settings top menu
and select Technical | Database Structure | Decimal Accuracy. We should see a list
of the currently defined settings.

3. Add a new configuration, setting Usage to Book Price, and choosing the Digits
precision:

Figure 4.2 – Creating new decimal precision

4. To add the model field using this decimal precision setting, edit the models/
library_book.py file by adding the following code:

class LibraryBook(models.Model):

 cost_price = fields.Float(

 'Book Cost', digits='Book Price')

120 Application Models

Tip
Whenever you add new fields in models, you will need to add them into views
in order to access them from the user interface. In the previous example, we
added the cost_price field. To see this in the form view, you need to add it
with <field name="cost_price"/>.

How it works...
When you add a string value to the digits attribute of the field, Odoo looks up that
string in the decimal accuracy model's Usage field and returns a tuple with 16-digit
precision and the number of decimals that were defined in the configuration. Using
the field definition, instead of having it hardcoded, allows the end user to configure it
according to their needs.

Tip
If you are using a version older than v13, you require some extra work to use
the digits attribute in float fields. In older versions, decimal precision
was available in a separate module called decimal_precision. To
enable custom decimal precision in your field, you have to use the get_
precision() method of the decimal_precision module like this:
cost_price = fields.Float('Book Cost', digits=dp.
get_precision('Book Price')).

Adding a monetary field to a model
Odoo has special support for monetary values related to a currency. Let's see how we can
use this in a model.

Getting ready
We will continue to use the my_library add-on module from the previous recipe.

How to do it...
The monetary field needs a complementary currency field to store the currency for the
amounts.

Adding a monetary field to a model 121

my_library already has models/library_book.py, which defines a basic model.
We will edit this to add the required fields:

1. Add the field to store the currency that is to be used:

class LibraryBook(models.Model):

 # ...

 currency_id = fields.Many2one(

 'res.currency', string='Currency')

2. Add the monetary field to store the amount:

class LibraryBook(models.Model):

 # ...

 retail_price = fields.Monetary(

 'Retail Price',

 # optional: currency_field='currency_id',

)

Now, upgrade the add-on module, and the new fields should be available in the model.
They won't be visible in views until they are added to them, but we can confirm their
addition by inspecting the model fields in Settings | Technical | Database Structure |
Models in developer mode.

After adding them to the form view, it will appear as follows:

Figure 4.3 – Currency symbol in the monetary field

How it works...
Monetary fields are similar to float fields, but Odoo is able to represent them correctly in
the user interface since it knows what their currency is through the second field.

This currency field is expected to be called currency_id, but we can use whatever field
name we like as long as it is indicated using the optional currency_field parameter.

122 Application Models

Tip
You can omit the currency_field attribute from the monetary field
if you are storing your currency information in a field with the name
currency_id.

This is very useful when you need to maintain the amounts in different currencies in the
same record. For example, if we want to include the currency of the sale order and the
currency of the company, you can configure the two fields as fields.Many2one(res.
currency) and use the first one for the first amount and the other one for the second
amount.

You might like to know that the decimal precision for the amount is taken from the
currency definition (the decimal_precision field of the res.currency model).

Adding relational fields to a model
Relations between Odoo models are represented by relational fields. There are three
different types of relations:

• many-to-one, commonly abbreviated as m2o

• one-to-many, commonly abbreviated as o2m

• many-to-many, commonly abbreviated as m2m

Looking at the Library Books example, we can see that each book can only have one
publisher, so we can have a many-to-one relation between books and publishers.

Each publisher, however, can have many books. So, the previous many-to-one relation
implies a one-to-many reverse relation.

Finally, there are cases in which we can have a many-to-many relation. In our example,
each book can have several (many) authors. Also, inversely, each author may have written
many books. Looking at it from either side, this is a many-to-many relation.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

Adding relational fields to a model 123

How to do it...
Odoo uses the partner model, res.partner, to represent people, organizations,
and addresses. We should use it for authors and publishers. We will edit the models/
library_book.py file to add these fields:

1. Add the many-to-one field for the book's publisher to Library Books:

class LibraryBook(models.Model):

 # ...

 publisher_id = fields.Many2one(

 'res.partner', string='Publisher',

 # optional:

 ondelete='set null',

 context={},

 domain=[],

)

2. To add the one-to-many field for a publisher's books, we need to extend the partner
model. For simplicity, we will add that to the same Python file:

class ResPartner(models.Model):

 _inherit = 'res.partner'

 published_book_ids = fields.One2many(

 'library.book', 'publisher_id',

 string='Published Books')

The _inherit attribute we use here is for inheriting an existing model. This will
be explained in the Adding features to a model using inheritance recipe later in this
chapter.

3. We've already created the many-to-many relation between books and authors, but
let's revisit it:

class LibraryBook(models.Model):

 # ...

 author_ids = fields.Many2many(

 'res.partner', string='Authors')

124 Application Models

4. The same relation, but from authors to books, should be added to the partner
model:

class ResPartner(models.Model):

 # ...

 authored_book_ids = fields.Many2many(

 'library.book',

 string='Authored Books',

 # relation='library_book_res_partner_rel' #
optional

)

Now, upgrade the add-on module, and the new fields should be available in the model.
They won't be visible in the views until they are added to them, but we can confirm their
addition by inspecting the model fields in Settings | Technical | Database Structure |
Models in developer mode.

How it works...
Many-to-one fields add a column to the database table of the model, storing the database
ID of the related record. At the database level, a foreign key constraint will also be
created, ensuring that the stored IDs are a valid reference to a record in the related table.
No database index is created for these relation fields, but this can be done by adding the
index=True attribute.

We can see that there are four more attributes that we can use for many-to-one fields. The
ondelete attribute determines what happens when the related record is deleted. For
example, what happens to books when their publisher record is deleted? The default is
'set null', which sets an empty value on the field. It can also be 'restrict', which
prevents the related record from being deleted, or 'cascade', which causes the linked
record to also be deleted.

The last two (context and domain) are also valid for the other relational fields. These
are mostly meaningful on the client-side, and, at the model level, they act as default values
that will be used in the client-side views:

• context adds variables to the client context when clicking through the field to
the related record's view. We can, for example, use it to set default values for new
records that are created through that view.

• domain is a search filter that's used to limit the list of related records that are
available.

Adding relational fields to a model 125

Both context and domain are explained in more detail in Chapter 9, Backend Views.

One-to-many fields are the reverse of many-to-one relations, and although they are added
to models just like other fields, they have no actual representation in the database. Instead,
they are programmatic shortcuts, and they enable views to represent these lists of related
records. That means that one-to-many fields need a many-to-one field in the reference
model. In our example, we have added one-to-many field by inheriting a partner model.
We will see model inheritance in detail in the Adding features to a model using inheritance
recipe in this chapter. In our example, the one-to-many field published_book_ids
has a reference to the publisher_id field of the library.book model.

Many-to-many relations don't add columns to the tables for the models, either. This
type of relation is represented in the database using an intermediate relation table, with
two columns to store the two related IDs. Adding a new relation between a book and an
author creates a new record in the relation table with the ID of the book and the ID of the
author.

Odoo automatically handles the creation of this relation table. The relation table name is,
by default, built using the name of the two related models, alphabetically sorted, plus
a _rel suffix. However, we can override this using the relation attribute.

A case to keep in mind is when the two table names are large enough for the automatically
generated database identifiers to exceed the PostgreSQL limit of 63 characters. As a rule
of thumb, if the names of the two related tables exceed 23 characters, you should use the
relation attribute to set a shorter name. In the next section, we will go into more detail
on this.

There's more...
The Many2one fields support an additional auto_join attribute. This is a flag that
allows the ORM to use SQL joins on this field. Due to this, it bypasses the usual ORM
control, such as user access control and record access rules. In specific cases, it can solve
performance issues, but it is advised to avoid using it.

We have covered the shortest way to define the relational fields. Let's take a look at the
attributes specific to this type of field.

The One2many field attributes are as follows:

• comodel_name: This is the target model identifier and is mandatory for all
relational fields, but it can be defined position-wise, without the keyword.

• inverse_name: This only applies to One2many and is the field name in the target
model for the inverse Many2one relation.

126 Application Models

• limit: This applies to One2many and Many2many, and sets an optional limit in
terms of the number of records to read that are used at the user interface level.

The Many2many field attributes are as follows:

• comodel_name: This is the same as it is for the One2many field.

• relation: This is the name to use for the table supporting the relation, overriding
the automatically defined name.

• column1: This is the name for the Many2one field in the relational table linking to
this model.

• column2: This is the name for the Many2one field in the relational table linking to
comodel.

For Many2many relations, in most cases, the ORM will take care of the default values for
these attributes. It is even capable of detecting inverse Many2many relations, detecting
the already existing relation table, and appropriately inverting the column1 and
column2 values.

However, there are two cases where we need to step in and provide our own values for
these attributes:

• One is the case where we need more than one Many2many relations between
the same two models. For this to be possible, we must provide ourselves with the
relation table name for the second relation, which must be different from the
first relation.

• The other case is when the database names of the related tables are long enough for
the automatically generated relation name to exceed the 63-character PostgreSQL
limit for database object names.

The relation table's automatic name is <model1>_<model2>_rel. However, this
relation table also creates an index for its primary key with the following identifier:

<model1>_<model2>_rel_<model1>_id_<model2>_id_key

This primary key also needs to meet the 63-character limit. So, if the two table names
combined exceed a total of 63 characters, you will probably have trouble meeting the
limits and will need to manually set the relation attribute.

Adding a hierarchy to a model 127

Adding a hierarchy to a model
Hierarchies are represented like a model having relations with the same model. Each
record has a parent record in the same model, and many child records. This can be
achieved by simply using many-to-one relations between the model and itself.

However, Odoo also provides improved support for this type of field by using the
nested set model (https://en.wikipedia.org/wiki/Nested_set_model).
When activated, queries using the child_of operator in their domain filters will run
significantly faster.

Staying with the Library Books example, we will build a hierarchical category tree that
can be used to categorize books.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
We will add a new Python file, models/library_book_categ.py, for the category
tree, as follows:

1. To load the new Python code file, add the following line to
models/__init__.py:

from . import library_book_categ

2. To create the Book Category model with the parent and child relations, create
the models/library_book_categ.py file with the following code:

from odoo import models, fields, api

class BookCategory(models.Model):

 _name = 'library.book.category'

 name = fields.Char('Category')

 parent_id = fields.Many2one(

 'library.book.category',

 string='Parent Category',

 ondelete='restrict',

 index=True)

 child_ids = fields.One2many(

https://en.wikipedia.org/wiki/Nested_set_model

128 Application Models

 'library.book.category', 'parent_id',

 string='Child Categories')

3. To enable the special hierarchy support, also add the following code:

_parent_store = True

_parent_name = "parent_id" # optional if field is
'parent_id'

parent_path = fields.Char(index=True)

4. To add a check preventing looping relations, add the following line to the model:

from odoo.exceptions import ValidationError

...

@api.constraints('parent_id')

def _check_hierarchy(self):

 if not self._check_recursion():

 raise models.ValidationError(

 'Error! You cannot create recursive
categories.')

5. Now, we need to assign a category to a book. To do this, we will add a new
many2one field to the library.book model:

category_id = fields.Many2one('library.book.category')

Finally, a module upgrade will make these changes effective.

To display the librart.book.category model in the user interface, you will need to
add menus, views, and security rules. For more details, refer to Chapter 3, Creating Odoo
Add-On Modules. Alternatively, you can access all code at https://github.com/
PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition.

How it works...
Steps 1 and 2 create the new model with hierarchical relations. The Many2one relation
adds a field to reference the parent record. For faster child record discovery, this field is
indexed in the database using the index=True parameter. The parent_id field must
have ondelete set to either 'cascade' or 'restrict'. At this point, we have all
that is required to achieve a hierarchical structure, but there are a few more additions we
can make to enhance it. The One2many relation does not add any additional fields to the
database, but provides a shortcut to access all the records with this record as their parent.

https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition

Adding constraint validations to a model 129

In step 3, we activate the special support for the hierarchies. This is useful for high-read
but low-write instructions, since it brings faster data browsing at the expense of costlier
write operations. This is done by adding one helper field, parent_path, and setting the
model attribute to _parent_store=True. When this attribute is enabled, the helper
field will be used to store data in searches in the hierarchical tree. By default, it is assumed
that the field for the record's parent is called parent_id, but a different name can also be
used. In this case, the correct field name should be indicated using the additional model
attribute, _parent_name. The default is as follows:

_parent_name = 'parent_id'

Step 4 is advised in order to prevent cyclic dependencies in the hierarchy, which means
having a record in both the ascending and descending trees. This is dangerous for
programs that navigate through the tree, since they can get into an infinite loop.
models.Model provides a utility method for this (_check_recursion) that we have
reused here.

Step 5 is to add the category_id field with the type many2one to the libary.
book book, so that we can set a category on book records. This is just for the purpose of
completing our example.

There's more...
The technique shown here should be used for static hierarchies, which are read and
queried often but are updated less frequently. Book categories are a good example, since
the library will not be continuously creating new categories; however, readers will often
be restricting their searches to a category and its child categories. The reason for this lies
in the implementation of the nested set model in the database, which requires an update
of the parent_path column (and the related database indexes) for all records whenever
a category is inserted, removed, or moved. This can be a very expensive operation,
especially when multiple editions are being performed in parallel transactions.

If you are dealing with a very dynamic hierarchical structure, the standard parent_id
and child_ids relations will often result in better performance by avoiding table-level
locks.

Adding constraint validations to a model
Models can have validations preventing them from entering undesired conditions.

130 Application Models

Odoo supports two different types of constraints:

• The ones checked at the database level

• The ones checked at the server level

Database-level constraints are limited to the constraints supported by PostgreSQL. The
most commonly used ones are the UNIQUE constraints, but the CHECK and EXCLUDE
constraints can also be used. If these are not enough for our needs, we can use Odoo
server-level constraints written in Python code.

We will use the Library Books model that we created in Chapter 3, Creating Odoo
Add-On Modules, and add a couple of constraints to it. We will add a database constraint
that prevents duplicate book titles, and a Python model constraint that prevents release
dates in the future.

Getting ready
We will continue using the my_library add-on module from the previous recipe. We
expect it to contain at least the following:

from odoo import models, fields

class LibraryBook(models.Model):

 _name = 'library.book'

 name = fields.Char('Title', required=True)

 date_release = fields.Date('Release Date')

How to do it...
We will edit the LibraryBook class in the models/library_book.py Python file:

1. To create the database constraint, add a model attribute:

class LibraryBook(models.Model):

 # ...

 _sql_constraints = [

 ('name_uniq', 'UNIQUE (name)',

 'Book title must be unique.'),

 ('positive_page', 'CHECK(pages>0)',

 'No of pages must be positive')

]

Adding constraint validations to a model 131

2. To create the Python code constraint, add a model method:

from odoo import api, models, fields

from odoo.exceptions import ValidationError

class LibraryBook(models.Model):

 # ...

 @api.constrains('date_release')

 def _check_release_date(self):

 for record in self:

 if record.date_release and

 record.date_release > fields.Date.
today():

 raise models.ValidationError(

 'Release date must be in the past')

After these changes are made to the code file, an add-on module upgrade and a server
restart are needed.

How it works...
The first step creates a database constraint on the model's table. It is enforced at the
database level. The _sql_constraints model attribute accepts a list of constraints to
create. Each constraint is defined by a three-element tuple. These are listed as follows:

• A suffix to use for the constraint identifier. In our example, we used name_uniq,
and the resulting constraint name is library_book_name_uniq.

• The SQL to use in the PostgreSQL instruction to alter or create the database table.

• A message to report to the user when the constraint is violated.

In our example, we have used two SQL constraints. The first one is for a unique book
name, and the second one is to check whether the book has a positive number of pages.

Warning
If you are adding SQL constraints to the existing model through model
inheritance, make sure you don't have rows that violate the constraints. If you
have such rows, then SQL constraints will not be added and an error will be
generated in the log.

132 Application Models

As we mentioned earlier, other database table constraints can also be used. Note that
column constraints, such as NOT NULL, can't be added this way. For more information
on PostgreSQL constraints in general and table constraints in particular, take a look at
http://www.postgresql.org/docs/current/static/ddl-constraints.
html.

In the second step, we added a method to perform Python code validation. It is decorated
with @api.constrains, meaning that it should be executed to run checks when one
of the fields in the argument list is changed. If the check fails, a ValidationError
exception will be raised.

There's more...
Normally, if you need complex validation, you can use @api.constrains, but for some
simple cases, you can use _sql_constraints with the CHECK option. Take a look at
the following example:

_sql_constraints = [

 ('check_credit_debit',

 'CHECK(credit + debit>=0 AND credit * debit=0)',

 'Wrong credit or debit value in accounting entry!'

)

]

In the preceding example, we have used the CHECK option, and we are checking multiple
conditions in the same constraints with the AND operator.

Adding computed fields to a model
Sometimes, we need to have a field that has a value calculated or derived from other fields
in the same record or in related records. A typical example is the total amount, which is
calculated by multiplying a unit price by a quantity. In Odoo models, this can be achieved
using computed fields.

To show you how computed fields work, we will add one to the Library Books model
to calculate the days since the book's release date.

It is also possible to make computed fields editable and searchable. We will implement this
to our example as well.

http://www.postgresql.org/docs/current/static/ddl-constraints.html
http://www.postgresql.org/docs/current/static/ddl-constraints.html

Adding computed fields to a model 133

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
We will edit the models/library_book.py code file to add a new field and the
methods supporting its logic:

1. Start by adding the new field to the Library Books model:

class LibraryBook(models.Model):

 # ...

 age_days = fields.Float(

 string='Days Since Release',

 compute='_compute_age',

 inverse='_inverse_age',

 search='_search_age',

 store=False, # optional

 compute_sudo=True # optional

)

2. Next, add the method with the value computation logic:

...

from odoo import api # if not already imported

...

class LibraryBook(models.Model):

 # ...

 @api.depends('date_release')

 def _compute_age(self):

 today = fields.Date.today()

 for book in self:

 if book.date_release:

 delta = today - book.date_release

 book.age_days = delta.days

 else:

 book.age_days = 0

134 Application Models

3. To add the method and implement the logic to write on the computed field, use the
following code:

from datetime import timedelta

...

class LibraryBook(models.Model):

 # ...

 def _inverse_age(self):

 today = fields.Date.today()

 for book in self.filtered('date_release'):

 d = today - timedelta(days=book.age_days)

 book.date_release = d

4. To implement the logic that will allow you to search in the computed field, use the
following code:

from datetime import timedelta

class LibraryBook(models.Model):

 # ...

 def _search_age(self, operator, value):

 today = fields.Date.today()

 value_days = timedelta(days=value)

 value_date = today - value_days

 # convert the operator:

 # book with age > value have a date < value_date

 operator_map = {

 '>': '<', '>=': '<=',

 '<': '>', '<=': '>=',

 }

 new_op = operator_map.get(operator, operator)

 return [('date_release', new_op, value_date)]

An Odoo restart, followed by a module upgrade, is needed to correctly activate these new
additions.

Adding computed fields to a model 135

How it works...
The definition of a computed field is the same as that of a regular field, except that
a compute attribute is added to specify the name of the method to use for its
computation.

Their similarity can be deceptive, since computed fields are internally quite different from
regular fields. Computed fields are dynamically calculated at runtime, and because of that,
they are not stored in the database and so you cannot search or write on compute fields by
default. You need to do some extra work in order to enable write and search support for
compute fields. Let's see how to do it.

The computation function is dynamically calculated at runtime, but the ORM uses
caching to avoid inefficiently recalculating it every time its value is accessed. So, it needs to
know what other fields it depends on. It uses the @depends decorator to detect when its
cached values should be invalidated and recalculated.

Ensure that the compute function always sets a value on the computed field. Otherwise,
an error will be raised. This can happen when you have if conditions in your code that
sometimes fail to set a value on the computed field. This can be tricky to debug.

Write support can be added by implementing the inverse function. This uses the value
assigned to the computed field to update the origin fields. Of course, this only makes
sense for simple calculations. Nevertheless, there are still cases where it can be useful. In
our example, we make it possible to set the book release date by editing the Days Since
Release computed field. The inverse attribute is optional; if you don't want to make the
compute field editable, you can skip it.

It is also possible to make a non-stored computed field searchable by setting the search
attribute to the method name (similar to compute and inverse). Like inverse,
search is also optional; if you don't want to make the compute field searchable, you can
skip it.

However, this method is not expected to implement the actual search. Instead, it receives
the operator and value used to search on the field as parameters, and is expected to return
a domain with the replacement search conditions to use. In our example, we translate
a search of the Days Since Release field into an equivalent search condition on the
Release Date field.

136 Application Models

The optional store=True flag stores the field in the database. In this case, after being
computed, the field values are stored in the database, and from there on, they are retrieved
in the same way as regular fields, instead of being recomputed at runtime. Thanks to
the @api.depends decorator, the ORM will know when these stored values need to
be recomputed and updated. You can think of it as a persistent cache. It also has the
advantage of making the field usable for search conditions, including sorting and grouping
by operations. If you use store=True in your compute field, you no longer need to
implement the search method because the field is stored in a database and you can
search/sort based on the stored field.

The compute_sudo=True flag is to be used in cases in which the computations need to
be done with elevated privileges. This might be the case when the computation needs to
use data that may not be accessible to the end user.

Important note
The default value of compute_sudo is changed in Odoo v13. Prior to
Odoo v13, the value of compute_sudo was False. But in v13, the default
value of compute_sudo will be based on store attributes. If the value of the
store attribute is True, then compute_sudo is True or it is False.
However, you can always manually change it by explicitly putting compute_
sudo in your field definition.

There's more...
Odoo v13 introduced a new caching mechanism for ORM. Earlier, the cache was based
on the environment, but now in Odoo v13, we have one global cache. So, if you have a
computed field that depends on context values, then you may get incorrect values on
occasion. To fix this issue, you need to use the @api.depends_context decorator.
Refer to the following example:

 @api.depends('price')

 @api.depends_context('company_id')

 def _compute_value(self):

 company_id = self.env.context.get('company_id')

 ...

 # other computation

Exposing related fields stored in other models 137

You can see in the preceding example that our computation is using company_id
from the context. By using company_id in the depends_context decorator, we are
ensuring that the field value will be recomputed based on the value of company_id in
the context.

Exposing related fields stored in other models
When reading data from the server, Odoo clients can only get values for the fields that are
available in the model and being queried. Client-side code, unlike server-side code, can't
use dot notation to access data in the related tables.

However, these fields can be made available there by adding them as related fields. We will
do this to make the publisher's city available in the Library Books model.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
Edit the models/library_book.py file to add the new related field:

1. Ensure that we have a field for the book publisher:

class LibraryBook(models.Model):

 # ...

 publisher_id = fields.Many2one(

 'res.partner', string='Publisher')

2. Now, add the related field for the publisher's city:

class LibraryBook(models.Model):

 # ...

 publisher_city = fields.Char(

 'Publisher City',

 related='publisher_id.city',

 readonly=True)

Finally, we need to upgrade the add-on module for the new fields to be available in
the model.

138 Application Models

How it works...
Related fields are just like regular fields, but they have an additional attribute, related,
with a string for the separated chain of fields to traverse.

In our case, we access the publisher-related record through publisher_id, and then
read its city field. We can also have longer chains, such as publisher_id.country_
id.country_code.

Note that in this recipe, we set the related field as readonly. If we don't do that, the field
will be writable, and the user may change its value. This will have the effect of changing
the value of the city field of the related publisher. While this can be a useful side effect,
caution needs to be exercised. All the books that are published by the same publisher will
have their publisher_city field updated, which may not be what the user expects.

There's more...
Related fields are, in fact, computed fields. They just provide a convenient shortcut
syntax to read field values from related models. As a computed field, this means that the
store attribute is also available. As a shortcut, they also have all the attributes from the
referenced field, such as name, translatable, as required.

Additionally, they support a related_sudo flag similar to compute_sudo; when set
to True, the field chain is traversed without checking the user access rights.

Using related fields in a create() method can affect performance, as the computation of
these fields is delayed until the end of their creation. So, if you have a One2many relation,
such as in sale.order and sale.order.line models, and you have a related field
on the line model referring to a field on the order model, you should explicitly read the
field on the order model during record creation, instead of using the related field shortcut,
especially if there are a lot of lines.

Adding dynamic relations using
reference fields
With relational fields, we need to decide the relation's target model (or co-model)
beforehand. However, sometimes, we may need to leave that decision to the user and first
choose the model we want and then the record we want to link to.

With Odoo, this can be achieved using reference fields.

Adding dynamic relations using reference fields 139

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
Edit the models/library_book.py file to add the new related field:

1. First, we need to add a helper method to dynamically build a list of selectable target
models:

from odoo import models, fields, api

class LibraryBook(models.Model):

 # ...

 @api.model

 def _referencable_models(self):

 models = self.env['ir.model'].search([

 ('field_id.name', '=', 'message_ids')])

 return [(x.model, x.name) for x in models]

2. Then, we need to add the reference field and use the previous function to provide a
list of selectable models:

 ref_doc_id = fields.Reference(

 selection='_referencable_models',

 string='Reference Document')

Since we are changing the model's structure, a module upgrade is needed to activate these
changes.

How it works...
Reference fields are similar to many-to-one fields, except that they allow the user to select
the model to link to.

The target model is selectable from a list that's provided by the selection attribute. The
selection attribute must be a list of two element tuples, where the first is the model's
internal identifier, and the second is a text description for it.

Here's an example:

[('res.users', 'User'), ('res.partner', 'Partner')]

140 Application Models

However, rather than providing a fixed list, we can use most common models. For
simplicity, we are using all the models that have the messaging feature. Using the _
referencable_models method, we provided a model list dynamically.

Our recipe started by providing a function to browse all the model records that can be
referenced to dynamically build a list that will be provided to the selection attribute.
Although both forms are allowed, we declared the function name inside quotes, instead of
directly referencing the function without quotes. This is more flexible, and it allows for the
referenced function to be defined only later in the code, for example, which is something
that is not possible when using a direct reference.

The function needs the @api.model decorator because it operates on the model level,
and not on the record set level.

While this feature looks nice, it comes with a significant execution overhead. Displaying
the reference fields for a large number of records (for instance, in a list view) can create
heavy database loads as each value has to be looked up in a separate query. It is also unable
to take advantage of database referential integrity, unlike regular relation fields.

Adding features to a model using inheritance
One of the most important Odoo features is the ability of module add-ons to extend
features that are defined in other module add-ons without having to edit the code of the
original feature. This might be to add fields or methods, modify the existing fields, or
extend the existing methods to perform additional logic.

According to the official documentation, Odoo provides three types of inheritance:

• Class inheritance (extension)

• Prototype inheritance

• Delegation inheritance

We will see each one of these in a separate recipe. In this recipe we will see Class
inheritance (extension). It is used to add new fields or methods to existing models.

We will extend the built-in partner model res.partner to add it to a computed field
with the authored book count. This involves adding a field and a method to an existing
model.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

Adding features to a model using inheritance 141

How to do it...
We will be extending the built-in partner model. If you remembered, we have already
inherited the res.parnter model in the Adding relational fields to a model recipe in this
chapter. To keep the explanation as simple as possible, we will reuse the res.partner
model in the models/library_book.py code file:

1. First, we will ensure that the authored_book_ids inverse relation is in the
partner model and add the computed field:

class ResPartner(models.Model):

 _inherit = 'res.partner'

 _order = 'name'

 authored_book_ids = fields.Many2many(

 'library.book', string='Authored Books')

 count_books = fields.Integer('Number of Authored
Books',

 compute='_compute_count_books')

2. Next, add the method that's needed to compute the book count:

...

from odoo import api # if not already imported

class ResPartner(models.Model):

 # ...

 @api.depends('authored_book_ids')

 def _compute_count_books(self):

 for r in self:

 r.count_books = len(r.authored_book_ids)

Finally, we need to upgrade the add-on module for the modifications to take effect.

How it works...
When a model class is defined with the _inherit attribute, it adds modifications to the
inherited model, rather than replacing it.

This means that fields defined in the inheriting class are added or changed on the parent
model. At the database layer, the ORM is adding fields to the same database table.

142 Application Models

Fields are also incrementally modified. This means that if the field already exists in the
superclass, only the attributes declared in the inherited class are modified; the other ones
are kept as they are in the parent class.

Methods defined in the inheriting class replace methods in the parent class. If you don't
invoke the parent method with the super call, in that case, the parent's version of the
method will not be executed and we will lose the features. So, whenever you add a new
logic by inheriting existing methods, you should include a statement with super to call
its version in the parent class. This is discussed in more detail in Chapter 5, Basic Server-
Side Development.

This recipe will add new fields to the existing model. If you also want to add these new
fields to existing views (the user interface), refer to the Changing existing views – view
inheritance recipe in Chapter 9, Backend Views.

Copy model definition using inheritance
We have seen class inheritance (extension) in the previous recipe. Now we will see
prototype inheritance, which is used to copy the entire definition of the existing model.
In this recipe, we will make a copy of the library.book model.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
Prototype inheritance is executed by using the _name and _inherit class attributes
at the same time. Perform the following steps to generate a copy of the library.book
model:

1. Add new file called library_book_copy.py to the /my_library/models/
directory.

2. Add the following content to the in library_book_copy.py file:

from odoo import models, fields, api

class LibraryBookCopy(models.Model):

 _name = "library.book.copy"

 _inherit = "library.book"

 _description = "Library Book's Copy"

Copy model definition using inheritance 143

3. Import a new file reference into the /my_library/models/__init__.py file.
Following the changes, your __init__.py file will look like this:

from . import library_book

from . import library_book_categ

from . import library_book_copy

Finally, we need to upgrade the add-on module for the modifications to take effect. To
check the new model's definition, go to the Settings | Technical | Database Structure |
Models menu. You will see a new entry for the library.book.copy model here.

Tip
In order to see menus and views for the new model, you need to add the XML
definition of views and menus. To learn more about views and menus, refer to
the Adding menu items and views recipe in Chapter 3, Creating Odoo Add-On
Modules.

How it works...
By using _name with the _inherit class attribute at the same time, you can copy the
definition of the model. When you use both attributes in the model, Odoo will copy the
model definition of _inherit and create a new model with the _name attribute.

In our example, Odoo will copy the definition of the library.book model and create
a new model, library.book.copy.The new library.book.copy model has its
own database table with its own data that is totally independent from the library.
book parent model. Since it still inherits from the partner model, any subsequent
modifications to it will also affect the new model.

Prototype inheritance copies all the properties of the parent class. It copies fields,
attributes, and methods. If you want to modify them in the child class, you can simply do
so by adding a new definition to the child class. For example, the library.book model
has the _name_get method. If you want to use a different version of _name_get in the
child, you need to redefine the method in the library.book.copy model.

Warning
Prototype inheritance does not work if you use the same model name in the
_inherit and _name attributes. If you do use the same model name in the
_inherit and _name attributes, it will just behave like a normal extension
inheritance.

144 Application Models

There's more…
In the official documentation, this is called prototype inheritance, but in practice, it is
rarely used. The reason for this is that delegation inheritance usually answers to that
need in a more efficient way, without the need to duplicate data structures. For more
information on this, you can refer to the next recipe, Using delegation inheritance to copy
features to another model.

Using delegation inheritance to copy features
to another model
The third type of inheritance is Delegation inheritance. Instead of _inherit, it uses
the _inherits class attribute. There are cases where, rather than modifying an existing
model, we want to create a new model based on an existing one to use the features it
already has. We can copy a model's definitions with prototype inheritance, but this will
generate duplicate data structures. If you want to copy a model's definitions without
duplicating data structures, then the answer lies in Odoo's delegation inheritance, which
uses the _inherits model attribute (note the additional s).

Traditional inheritance is quite different from the concept in object-oriented
programming. Delegation inheritance, in turn, is similar, in that a new model can
be created to include the features from a parent model. It also supports polymorphic
inheritance, where we inherit from two or more other models.

We have a library with books. It's about time our library also has members. For a library
member, we need all the identification and address data that's found in the partner model,
and we also want it to retain some information pertaining to membership: a start date,
a termination date, and a card number.

Adding those fields to the partner model is not the best solution, since they will not be
used for partners that are not members. It would be great to extend the partner model
to a new model with some additional fields.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

Using delegation inheritance to copy features to another model 145

How to do it...
The new library member model should be in its own Python code file, but to keep the
explanation as simple as possible, we will reuse the models/library_book.py file:

1. Add the new model, inheriting from res.partner:

class LibraryMember(models.Model):

 _name = 'library.member'

 _inherits = {'res.partner': 'partner_id'}

 partner_id = fields.Many2one(

 'res.partner',

 ondelete='cascade')

2. Next, we will add the fields that are specific to library members:

class LibraryMember(models.Model):

 # ...

 date_start = fields.Date('Member Since')

 date_end = fields.Date('Termination Date')

 member_number = fields.Char()

 date_of_birth = fields.Date('Date of birth')

Now, we should upgrade the add-on module to activate the changes.

How it works...
The _inherits model attribute sets the parent models that we want to inherit from. In
this case, we just have one—res.partner. Its value is a key-value dictionary, where the
keys are the inherited models, and the values are the field names that were used to link to
them. These are Many2one fields that we must also define in the model. In our example,
partner_id is the field that will be used to link with the Partner parent model.

To better understand how this works, let's look at what happens at a database level when
we create a new member:

• A new record is created in the res_partner table.

• A new record is created in the library_member table.

• The partner_id field of the library_member table is set to the ID of the res_
partner record that is created for it.

146 Application Models

The member record is automatically linked to a new partner record. It's just a many-
to-one relation, but the delegation mechanism adds some magic so that the partner's
fields are seen as if they belong to the member record, and a new partner record is also
automatically created with the new member.

You may be interested in knowing that this automatically created partner record has
nothing special about it. It's a regular partner, and if you browse the partner model,
you will be able to find that record (without the additional member data, of course). All
members are partners, but only some partners are also members.

So, what happens if you delete a partner record that is also a member? You decide
by choosing the ondelete value for the relation field. For partner_id, we used
cascade. This means that deleting the partner will also delete the corresponding
member. We could have used the more conservative setting, restrict, to prohibit
deleting the partner while it has a linked member. In this case, only deleting the member
will work.

It's important to note that delegation inheritance only works for fields, and not for
methods. So, if the partner model has a do_something() method, the members model
will not automatically inherit it.

There's more...
There is a shortcut for this inheritance delegation. Instead of creating an _inherits
dictionary, you can use the delegate=True attribute in the Many2one field definition.
This will work exactly like the _inherits option. The main advantage is that this is
simpler. In the given example, we have performed the same inheritance delegation as in
the previous one, but in this case, instead of creating an _inherits dictionary, we have
used the delegate=True option in the partner_id field:

class LibraryMember(models.Model):

 _name = 'library.member'

 partner_id = fields.Many2one('res.partner',
ondelete='cascade', delegate=True)

 date_start = fields.Date('Member Since')

 date_end = fields.Date('Termination Date')

 member_number = fields.Char()

 date_of_birth = fields.Date('Date of birth')

Using abstract models for reusable model features 147

A noteworthy case of delegation inheritance is the users model, res.users. It inherits
from partners (res.partner). This means that some of the fields that you can see on
the user are actually stored in the partner model (notably, the name field). When a new
user is created, we also get a new, automatically created partner.

We should also mention that traditional inheritance with _inherit can also copy
features into a new model, although in a less efficient way. This was discussed in the
Adding features to a model using inheritance recipe.

Using abstract models for reusable model
features
Sometimes, there is a particular feature that we want to be able to add to several different
models. Repeating the same code in different files is a bad programming practice; it would
be better to implement it once and reuse it.

Abstract models allow us to create a generic model that implements some features that
can then be inherited by regular models in order to make that feature available.

As an example, we will implement a simple archive feature. It adds the active field to
the model (if it doesn't exist already) and makes an archive method available to toggle
the active flag. This works because active is a magic field. If present in a model by
default, the records with active=False will be filtered out from the queries.

We will then add it to the Library Books model.

Getting ready
We will continue using the my_library add-on module from the previous recipe.

How to do it...
The archive feature certainly deserves its own add-on module, or at least its own Python
code file. However, to keep the explanation as simple as possible, we will cram it into the
models/library_book.py file:

1. Add the abstract model for the archive feature. It must be defined in the Library
Book model, where it will be used:

class BaseArchive(models.AbstractModel):

 _name = 'base.archive'

 active = fields.Boolean(default=True)

148 Application Models

 def do_archive(self):

 for record in self:

 record.active = not record.active

2. Now, we will edit the Library Book model to inherit the archive model:

class LibraryBook(models.Model):

 _name = 'library.book'

 _inherit = ['base.archive']

 # ...

An upgrade of the add-on module is required in order for the changes to be activated.

How it works...
An abstract model is created by a class based on models.AbstractModel, instead of
the usual models.Model. It has all the attributes and capabilities of regular models; the
difference is that the ORM will not create an actual representation for it in the database.
This means that it can't have any data stored in it. It only serves as a template for a reusable
feature that is to be added to regular models.

Our archive abstract model is quite simple. It just adds the active field and a method to
toggle the value of the active flag, which we expect to be used later, via a button on the
user interface.

When a model class is defined with the _inherit attribute, it inherits the attribute
methods of those classes, and the attribute methods that are defined in the current class
add modifications to those inherited features.

The mechanism at play here is the same as that of a regular model extension (as per
the Adding features to a model using inheritance recipe). You may have noticed that
_inherit uses a list of model identifiers instead of a string with one model identifier.
In fact, _inherit can have both forms. Using the list form allows us to inherit from
multiple (usually Abstract) classes. In this case, we are inheriting just one, so a text
string would be fine. A list was used instead, for illustration purposes.

Using abstract models for reusable model features 149

There's more...
A noteworthy built-in abstract model is mail.thread, which is provided by the mail
(Discuss) add-on module. On models, it enables the discussion features that power the
message wall that's seen at the bottom of many forms.

Other than AbstractModel, a third model type is available: models.
TransientModel. This has a database representation like models.Model, but the
records that are created there are supposed to be temporary and regularly purged by
a server-scheduled job. Other than that, transient models work just like regular models.

models.TransientModel is useful for more complex user interactions, known as
wizards. The wizard is used to request inputs from the user. In Chapter 8, Advanced
Server-Side Development Techniques, we explore how to use these for advanced user
interaction.

5
Basic Server-Side

Development
In Chapter 4, Application Models, we saw how to declare or extend business models in
custom modules. The recipes in that chapter covered writing methods for computed fields,
as well as methods to constrain the values of fields. This chapter focuses on the basics
of server-side development in Odoo method definitions, recordset manipulation, and
extending inherited methods. With this, you will be able to add/modify business logins in
the Odoo module.

In this chapter, we will cover the following recipes:

• Defining model methods and using API decorators

• Reporting errors to the user

• Obtaining an empty recordset for a different model

• Creating new records

• Updating values of recordset records

• Searching for records

• Combining recordsets

• Filtering recordsets

152 Basic Server-Side Development

• Traversing recordset relations

• Sorting recordsets

• Extending the business logic defined in a model

• Extending write() and create()

• Customizing how records are searched

• Fetching data in groups using read_group()

Technical requirements
The technical requirements for this chapter include Odoo's online platform.

All the code used in this chapter can be downloaded from the following GitHub
repository at https://github.com/PacktPublishing/Odoo-14-
Development-Cookbook-Fourth-Edition/tree/master/Chapter05.

Defining model methods and using API
decorators
In Odoo models, a class is a mixture of field definitions and business logic methods. In
Chapter 4, Application Models, we saw how to add fields to a model. Now we will see how
to add methods and business logic to a model.

In this recipe, we will see how we can write a method that can be called by a button in
the user interface, or by another piece of code in our application. This method will act
on LibraryBook and perform the required actions to change the state of a selection
of books.

Getting ready
This recipe assumes that you have an instance ready, with the my_library add-on
module available, as described in Chapter 3, Creating Odoo Add-On Modules. You will
need to add a state field to the LibraryBook model, which is defined as follows:

from odoo import models, fields, api

class LibraryBook(models.Model):

 # [...]

 state = fields.Selection([

 ('draft', 'Unavailable'),

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter05

Getting ready 153

 ('available', 'Available'),

 ('borrowed', 'Borrowed'),

 ('lost', 'Lost')],

 'State', default="draft")

Refer to the Adding models recipe in Chapter 3, Creating Odoo Add-On Modules, for more
information.

How to do it...
To define a method on library books to change the state of a selection of books, you need
to add the following code to the model definition:

1. Add a helper method to check whether a state transition is allowed:

 @api.model

 def is_allowed_transition(self, old_state, new_
state):

 allowed = [('draft', 'available'),

 ('available', 'borrowed'),

 ('borrowed', 'available'),

 ('available', 'lost'),

 ('borrowed', 'lost'),

 ('lost', 'available')]

 return (old_state, new_state) in allowed

2. Add a method to change the state of some books to a new state that is passed as an
argument:

 def change_state(self, new_state):

 for book in self:

 if book.is_allowed_transition(book.state,
new_state):

 book.state = new_state

 else:

 continue

154 Basic Server-Side Development

3. Add a method to change the book state by calling the change_state method:

 def make_available(self):

 self.change_state('available')

 def make_borrowed(self):

 self.change_state('borrowed')

 def make_lost(self):

 self.change_state('lost')

4. Add a button and status bar in the <form> view. This will help us trigger these
methods from the user interface:

<form>

...

 <button name="make_available" string="Make Available"
type="object"/>

 <button name="make_borrowed" string="Make Borrowed"
type="object"/>

 <button name="make_lost" string="Make Lost"
type="object"/>

 <field name="state" widget="statusbar"/>

...

</form>

Update or install the module to make these changes available.

How it works...
The code in this recipe defines a few methods. They are normal Python methods that have
self as their first argument, and can have additional arguments as well. Some methods
are decorated with decorators from the odoo.api module.

Tip
The API decorators were initially introduced in Odoo 9.0 to support both old
and new frameworks. As of Odoo 10.0, the old API is no longer supported, but
some decorators, such as @api.model, are still being used.

Getting ready 155

When writing a new method, if you don't use any decorator, then the method is executed
on a recordset. In such methods, self is a recordset that can refer to an arbitrary number
of database records (this includes empty recordsets), and the code will often loop over the
records in self to do something on each individual record.

The @api.model decorator is similar, but it's used on methods for which only the model
is important, not the contents of the recordset, which is not acted upon by the method.
The concept is similar to Python's @classmethod decorator.

In step 1, we created the is_allowed_transition() method. The purpose of
this method is to verify whether a transition from one state to another is valid. The
tuples in the allowed list are the available transitions. For example, we don't want
to allow a transition from lost to borrow, which is why we haven't put ('lost,
'borrowed').

In step 2, we created the change_state() method. The purpose of this method is to
change the status of the book. When this method is called, it changes the status of the
book to the state given by the new_state parameter. It only changes the book status if
the transition is allowed. We used a for loop here because self can contain multiple
recordsets.

In step 3, we created the methods that change the state of the book by calling the
change_state() method. In our case, this method will be triggered by the buttons that
were added to the user interface.

In step 4, we added <button> in the <form> view. Upon clicking this button, the
Odoo web client will invoke the Python function mentioned in the name attribute. Refer
to the Adding buttons to forms recipe in Chapter 9, Backend Views, to learn how to call
such a method from the user interface. We have also added the state field with the
statusbar widget to display the status of the book in the <form> view.

When the user clicks on the button from the user interface, one of the methods from
step 3 will be called. Here, self will be the recordset that contains the record of the
library.book model. After that, we call the change_state() method and pass the
appropriate parameter based on the button that was clicked.

When change_state() is called, self is the same recordset of the library.book
model. The body of the change_state() method loops over self to process each
book in the recordset. Looping on self looks strange at first, but you will get used to this
pattern very quickly.

156 Basic Server-Side Development

Inside the loop, change_state() calls is_allowed_transition(). The
call is made using the book local variable, but it can be made on any recordset for
the library.book model, including, for example, self, since is_allowed_
transition() is decorated with @api.model. If the transition is allowed, change_
state() assigns the new state to the book by assigning a value to the attribute of the
recordset. This is only valid on recordsets with a length of 1, which is guaranteed to be the
case when iterating over self.

Reporting errors to the user
During method execution, it is sometimes necessary to abort processing because the
action that's requested by the user isn't valid or an error condition has been met. This
recipe shows you how to manage these cases by showing a helpful error message.

Getting ready
This recipe assumes that you have an instance ready, with the my_library add-on
module available, as described in the previous recipe.

How to do it...
We will make a change to the change_state method from the previous recipe and
display a helpful message when the user is trying to change the state that is not allowed by
the is_allowed_transition method. Perform the following steps to get started:

1. Add the following import at the beginning of the Python file:

from odoo.exceptions import UserError

from odoo.tools.translate import _

2. Modify the change_state method and raise a UserError exception from the
else part:

def change_state(self, new_state):

 for book in self:

 if book.is_allowed_transition(book.state, new_
state):

 book.state = new_state

 else:

 msg = _('Moving from %s to %s is not

Reporting errors to the user 157

allowed') % (book.state, new_state)

 raise UserError(msg)

How it works...
When an exception is raised in Python, it propagates up the call stack until it is processed.
In Odoo, the RPC (remote procedure call) layer that answers the calls made by the web
client catches all exceptions and, depending on the exception class, triggers different
possible behaviors on the web client.

Any exception not defined in odoo.exceptions will be handled as an internal
server error (HTTP status 500) with the stack trace. UserError will display an error
message in the user interface. The code of the recipe raises UserError to ensure that the
message is displayed in a user-friendly way. In all cases, the current database transaction
is rolled back.

We are using a function with a strange name, _(), which is defined in odoo.
tools.translate. This function is used to mark a string as translatable, and to
retrieve the translated string at runtime, given the language of the end user that's
found in the execution context. More information on this is available in Chapter 11,
Internationalization.

Important note
When using the _() function, ensure that you pass only strings with the
interpolation placeholder, not the whole interpolated string. For example,
_('Warning: could not find %s') % value is correct, but
_('Warning: could not find %s' % value) is incorrect
because the first one will not find the string with the substituted value in the
translation database.

There's more...
Sometimes, you are working on error-prone code, meaning that the operation you are
performing may generate an error. Odoo will catch this error and display a traceback to
the user. If you don't want to show a full error log to the user, you can cache the error and
raise a custom exception with a meaningful message. In the example provided, we are
generating UserError from the try...cache block so that instead of showing a full
error log, Odoo will now show a warning with a meaningful message:

def post_to_webservice(self, data):

 try:

158 Basic Server-Side Development

 req = requests.post('http://my-test-service.com',
data=data, timeout=10)

 content = req.json()

 except IOError:

 error_msg = _("Something went wrong during data
submission")

 raise UserError(error_msg)

 return content

There are a few more exception classes defined in odoo.exceptions, all deriving from
the base legacy except_orm exception class. Most of them are only used internally, apart
from the following:

• ValidationError: This exception is raised when a Python constraint on a field
is not respected. In Chapter 4, Application Models, refer to the Adding constraint
validations to a model recipe for more information.

• AccessError: This error is usually generated automatically when the user tries to
access something that is not allowed. You can raise the error manually if you want to
show the access error from your code.

• RedirectWarning: With this error, you can show a redirection button with
the error message. You need to pass two parameters to this exception: the first
parameter is the action ID, and the second parameter is the error message.

• Warning: In Odoo 8.0, odoo.exceptions.Warning played the same role as
UserError in 9.0 and later. It is now deprecated because the name was deceptive
(it is an error, not a warning) and it collided with the Python built-in Warning
class. It is kept for backward compatibility only, and you should use UserError in
your code.

Obtaining an empty recordset for a different
model
When writing Odoo code, the methods of the current model are available through self.
If you need to work on a different model, it is not possible to directly instantiate the class
of that model; you need to get a recordset for that model to start working.

This recipe shows you how to get an empty recordset for any model that's registered in
Odoo inside a model method.

Obtaining an empty recordset for a different model 159

Getting ready
This recipe will reuse the setup of the library example in the my_library add-on
module.

We will write a small method in the library.book model and search for all library.
members. To do this, we need to get an empty recordset for library.members. Make
sure you have added the library.members model and access rights for that model.

How to do it...
To get a recordset for library.members in a method of library.book, you need to
perform the following steps:

1. In the LibraryBook class, write a method called get_all_library_
members:

class LibraryBook(models.Model):

 # ...

 def log_all_library_members(self):

 # This is an empty recordset of model library.
member

 library_member_model = self.env['library.member']

 all_members = library_member_model.search([])

 print("ALL MEMBERS:", all_members)

 return True

2. Add a button to the <form> view to invoke our method:

<button name="log_all_library_members" string="Log
Members" type="object"/>

Update the module to apply the changes. After that, you will see the Log Members
button in the book's <form> view. Upon clicking that button, you will see the member's
recordset in the server log.

How it works...
At startup, Odoo loads all the modules and combines the various classes that derive from
Model, and also defines or extends the given model. These classes are stored in the Odoo
registry, indexed by name. The env attribute of any recordset, available as self.env, is
an instance of the Environment class defined in the odoo.api module.

160 Basic Server-Side Development

The Environment class plays a central role in Odoo development:

• It provides shortcut access to the registry by emulating a Python dictionary. If you
know the name of the model you're looking for, self.env[model_name] will
get you an empty recordset for that model. Moreover, the recordset will share the
environment of self.

• It has a cr attribute, which is a database cursor you may use to pass raw SQL
queries. Refer to the Executing raw SQL queries recipe in Chapter 8, Advanced
Server-Side Development Techniques, for more information on this.

• It has a user attribute, which is a reference to the current user performing the call.
Take a look at Chapter 8, Advanced Server-Side Development Techniques, and the
Changing the user performing an action recipe for more on this.

• It has a context attribute, which is a dictionary that contains the context of the
call. This includes information about the language of the user, the time zone, the
current selection of records, and much more. Refer to the Calling a method with
a modified context recipe in Chapter 8, Advanced Server-Side Development
Techniques, for more on this.

The call to search() is explained in the Searching for records recipe later.

See also
Sometimes, you want to use a modified version of the environment. One such example is
that you want an environment with a different user and language. In Chapter 8, Advanced
Server-Side Development Techniques, you will learn how to modify the environment at
runtime.

Creating new records
A common requirement when writing business logic methods is the creation of new
records. This recipe explains how to create records of the library.book.category
model. For our example, we will add a method that will create dummy categories for the
library.book.category model. To trigger this method, we will add a button to the
<form> view.

Getting ready
You need to know the structure of the models for which you want to create a record,
especially their names and types, as well as any constraints that exist on these fields
(for example, whether some of them are mandatory).

Creating new records 161

For this recipe, we will reuse the my_library module from Chapter 4, Application
Models. Take a look at the following example to quickly recall the library.book.
category model:

class BookCategory(models.Model):

 _name = 'library.book.category'

 name = fields.Char('Category')

 description = fields.Text('Description')

 parent_id = fields.Many2one(

 'library.book.category',

 string='Parent Category',

 ondelete='restrict',

 index=True

)

 child_ids = fields.One2many(

 'library.book.category', 'parent_id',

 string='Child Categories')

Make sure you have added menus, views, and access rights for the library.book.
category model.

How to do it...
To create a category with some child categories, you need to perform the following steps:

1. Create a method in the library.book.category model with the name
create_categories:

def create_categories(self):

2. Inside the body of this method, prepare a dictionary of values for the fields of the
first child category:

categ1 = {

 'name': 'Child category 1',

 'description': 'Description for child 1'

}

162 Basic Server-Side Development

3. Prepare a dictionary of values for the fields of the second category:

categ2 = {

 'name': 'Child category 2',

 'description': 'Description for child 2'

}

4. Prepare a dictionary of values for the fields of the parent category:

parent_category_val = {

 'name': 'Parent category',

 'email': 'Description for parent category',

 'child_ids': [

 (0, 0, categ1),

 (0, 0, categ2),

]

}

5. Call the create() method to create the new records:

record = self.env['library.book.category'].create(parent_
category_val)

6. Add a button in the <form> view to trigger the create_categories method
from the user interface:

<button name="create_categories" string="Create
Categories" type="object"/>

How it works...
To create a new record for a model, we can call the create(values) method on any
recordset related to the model. This method returns a new recordset with a length of 1
and contains the new record, with the field values specified in the values dictionary.

In the dictionary, the keys give the name of the fields, and the corresponding values
correspond to the value of the field. Depending on the field type, you need to pass
different Python types for the values:

• Text field values are given with Python strings.

• Float and Integer field values are given using Python floats or integers.

• Boolean field values are given preferably using Python Booleans or integers.

Creating new records 163

• Date field values are given with the Python datetime.date object.

• Datetime field values are given with the Python datetime.datetime object.

• Binary field values are passed as a Base64-encoded string. The base64
module from the Python standard library provides methods such as
encodebytes(bytestring) to encode a string in Base64.

• Many2one field values are given with an integer, which has to be the database ID
of the related record.

• One2many and Many2many fields use a special syntax. The value is a list that
contains tuples of three elements, as follows:

Table 5.1

In this recipe, we create the dictionaries for two contacts in the company we want to
create, and then we use these dictionaries in the child_ids entry of the dictionary
for the company being created by using the (0, 0, dict_val) syntax we explained
earlier.

When create() is called in step 5, three records are created:

• One for the parent book category, which is returned by create

• Two records for the child book category, which are available in record.child_
ids

There's more…
If the model defined some default values for some fields, nothing special needs to be
done. create() will take care of computing the default values for the fields that aren't
present in the supplied dictionary.

164 Basic Server-Side Development

The create() method also supports the creation of records in a batch. To create
multiple records in a batch, you need to pass a list of multiple values to the create()
method, as shown in the following example:

categ1 = {

 'name': 'Category 1',

 'description': 'Description for Category 1'

}

categ2 = {

 'name': 'Category 2',

 'description': 'Description for Category 2'

}

multiple_records = self.env['library.book.category'].
create([categ1, categ2])

Updating values of recordset records
Business logic often requires us to update records by changing the values of some of their
fields. This recipe shows you how to modify the date field of the partner as we go.

Getting ready
This recipe will use the same simplified library.book definition of the Creating new
records recipe. You may refer to this simplified definition to find out about the fields.

We have the date_release field in the library.book model. For illustration
purposes, we will write in this field with the click of a button.

How to do it...
1. To update a book's date_updated field, you can write a new method called

change_update_date(), which is defined as follows:

def change_release_date(self):

 self.ensure_one()

 self.date_release = fields.Date.today()

Updating values of recordset records 165

2. Then, you can add a button to the book's <form> view in xml, as follows:

<button name="change_release_date" string="Update Date"
type="object"/>

3. Restart the server and update the my_library module to see the changes. Upon
clicking the Update Date button, update_date will be changed.

How it works...
The method starts by checking whether the book recordset that's passed as self contains
exactly one record by calling ensure_one(). This method will raise an exception if this
is not the case, and the processing will abort. This is necessary because we don't want to
change the date of multiple records. If you want to update multiple values, you can remove
ensure_one() and update the attribute using a loop on the recordset.

Finally, the method modifies the values of the attributes of the book record. It updates the
date_release field with the current date. Just by modifying the field attributes of the
recordset, you can perform write operations.

There's more...
There are three options available if you want to write new values to the fields of records:

• Option one is the one that was explained in this recipe. It works in all contexts by
assigning values directly to the attribute representing the field of the record. It isn't
possible to assign a value to all recordset elements in one go, so you need to iterate
on the recordset, unless you are certain that you are only handling a single record.

• Option two is to use the update() method by passing dictionary mapping field
names to the values you want to set. This also only works for recordsets with a length
of 1. It can save some typing when you need to update the values of several fields at
once on the same record. Here's Step 2 of the recipe, rewritten to use this option:

def change_update_date(self):

 self.ensure_one()

 self.update({

 'date_release': fields.Datetime.now(),

 'another_field': 'value'

 ...

 })

166 Basic Server-Side Development

• Option three is to call the write() method, passing a dictionary that maps the
field names to the values you want to set. This method works for recordsets of
arbitrary size and will update all records with the specified values in one single
database operation when the two previous options perform one database call
per record and per field. However, it has some limitations: it does not work if the
records are not yet present in the database (refer to the Writing on change methods
recipe in Chapter 8, Advanced Server-Side Development Techniques, for more
information on this). Also, it requires a special format when writing relational fields,
similar to the one used by the create() method. Check the following table for the
format that's used to generate different values for the relational fields:

Table 5.2

Important note
Operation types 1, 2, 3, and 5 cannot be used with the create() method.

Searching for records
Searching for records is also a common operation in business logic methods. This recipe
shows you how to find the book by name and category.

Searching for records 167

Getting ready
This recipe will use the same library.book definition as the Creating new records
recipe did previously. We will write the code in a method called find_book(self).

How to do it...
To find the books, you need to perform the following steps:

1. Add the find_book method to the library.book model:

def find_book(self):

 ...

2. Write the search domain for your criteria:

domain = [

 '|',

 '&', ('name', 'ilike', 'Book Name'),

 ('category_id.name', 'ilike', 'Category
Name'),

 '&', ('name', 'ilike', 'Book Name 2'),

 ('category_id.name', 'ilike', 'Category Name
2')

]

3. Call the search() method with the domain, which will return the recordset:

books = self.search(domain)

The books variable will have a recordset of searched books. You can print or log that
variable to see the result in the server log.

How it works...
Step 1 defines the method.

Step 2 creates a search domain in a local variable. Often, you'll see this creation inline in
the call to search, but with complex domains, it is good practice to define it separately.

For a full explanation of the search domain syntax, refer to the Defining filters on record
lists – domain recipe in Chapter 9, Backend Views.

168 Basic Server-Side Development

Step 3 calls the search() method with the domain. The method returns a recordset that
contains all the records that match the domain, which can then be processed further. In
this recipe, we call the method with just the domain, but the following keyword arguments
are also supported:

• offset=N: This is used to skip the first N records that match the query. This
can be used along with limit to implement pagination or to reduce memory
consumption when processing a very large number of records. It defaults to 0.

• limit=N: This indicates that, at most, N records should be returned. By default,
there is no limit.

• order=sort_specification: This is used to force the order in the recordset
returned. By default, the order is given by the _order attribute of the model class.

• count=boolean: If True, this returns the number of records instead of the
recordset. It defaults to False.

Important note
We recommend using the search_count(domain) method rather than
search(domain, count=True), as the name of the method conveys
the behavior in a much clearer way. Both will give the same result.

Sometimes, you need to search from another model so that searching for self will
return a recordset of the current model. To search from another model, we need to get
an empty recordset for the model. For example, let's say we want to search some contacts.
To do that, we will need to use the search() method on the res.partner model.
Refer to the following code. Here we get the empty recordset of res.partner to search
the contacts:

def find_partner(self):

 PartnerObj = self.env['res.partner']

 domain = [

 '&', ('name', 'ilike', 'Parth Gajjar'),

 ('company_id.name', '=', 'Odoo')

]

 partner = PartnerObj.search(domain)

In the preceding code, you can omit the '&' from the domain, because when you do not
specify the domain, then Odoo will take '&' as a default.

Combining recordsets 169

There's more...
We said previously that the search() method returned all the records matching the
domain. This is not actually completely true. The security rules ensure that the user only
gets those records to which they have read access rights. Additionally, if the model has
a boolean field called active and no term of the search domain specifies a condition on
that field, then an implicit condition is added by search to only return active=True
records. So, if you expect a search to return something, but you only get empty recordsets,
ensure that you check the value of the active field (if present) to check for record rules.

Refer to the Calling a method with a different context recipe in Chapter 8, Advanced
Server-Side Development Techniques, for a way to not have the implicit active=True
condition added. Take a look at the Limiting record access using record rules recipe in
Chapter 10, Security Access, for more information about record-level access rules.

If, for some reason, you find yourself writing raw SQL queries to find record IDs,
ensure that you use self.env['record.model'].search([('id', 'in',
tuple(ids))]).ids after retrieving the IDs to ensure that security rules are applied.
This is especially important in multi-company Odoo instances where the record rules are
used to ensure proper discrimination between companies.

Combining recordsets
Sometimes, you will find that you have obtained recordsets that are not exactly what you
need. This recipe shows various ways of combining them.

Getting ready
To use this recipe, you need to have two or more recordsets for the same model.

How to do it...
Perform the following steps to perform common operations on recordsets:

1. To merge two recordsets into one while preserving their order, use the following
operation:

result = recordset1 + recordset2

2. To merge two recordsets into one while ensuring that there are no duplicates in the
result, use the following operation:

result = recordset1 | recordset2

170 Basic Server-Side Development

3. To find the records that are common to two recordsets, use the following operation:

result = recordset1 & recordset2

How it works...
The class for recordsets implements various Python operator redefinitions, which are used
here. Here's a summary table of the most useful Python operators that can be used on
recordsets:

Table 5.3

There are also in-place operators, +=, -=, &=, and |=, which modify the left-hand side
operand instead of creating a new recordset. These are very useful when updating a
record's One2many or Many2many fields. Refer to the Updating values of recordset records
recipe for an example of this.

Filtering recordsets 171

Filtering recordsets
In some cases, you already have a recordset, but only you need to operate on certain
records. You can, of course, iterate on the recordset, checking for the condition on each
iteration and acting depending on the result of the check. It can be easier, and in some
cases, more efficient, to construct a new recordset containing only the interesting records
and calling a single operation on that recordset.

This recipe shows you how to use the filter() method to extract a subset of recordsets
based on a condition.

Getting ready
We will reuse the simplified library.book model that was shown in the Creating new
records recipe. This recipe defines a method to extract books that have multiple authors
from a supplied recordset.

How to do it...
To extract records that have multiple authors from a recordset, you need to perform the
following steps:

1. Define the method to accept the original recordset:

 @api.model

 def books_with_multiple_authors(self, all_books):

2. Define an inner predicate function:

 def predicate(book):

 if len(book.author_ids) > 1:

 return True

 return False

3. Call filter(), as follows:

 return all_books.filter(predicate)

You can print or log the result of this method to see it in a server log. Refer to the example
code of this recipe for more.

172 Basic Server-Side Development

How it works...
The implementation of the filter() method creates an empty recordset. All the records
for which the predicate function evaluates to True are added to this empty recordset.
The new recordset is finally returned. The order of records in the original recordset is
preserved.

The preceding recipe used a named internal function. For such simple predicates, you will
often find an anonymous Lambda function being used:

@api.model

def books_with_multiple_authors(self, all_books):

 return all_books.filter(lambda b: len(b.author_ids) > 1)

Actually, you need to filter a recordset based on the fact that the value of a field is truthy
in the Python sense (non-empty strings, non-zero numbers, non-empty containers, and
so on). So, if you want to filter records that have a category set, you can pass the field name
to filter like this: all_books.filter('category_id').

There's more...
Keep in mind that filter() operates in memory. If you are trying to optimize the
performance of a method on the critical path, you may want to use a search domain or
even move to SQL, at the cost of readability.

Traversing recordset relations
When working with a recordset with a length of 1, various fields are available as record
attributes. Relational attributes (One2many, Many2one, and Many2many) are also
available with values that are recordsets, too. As an example, let's say we want to access the
name of the category from the recordset of the library.book model. You can access
the category name by traversing through the Many2one field's category_id as follows:
book.category_id.name. However, when working with recordsets with more than
one record, the attributes cannot be used.

This recipe shows you how to use the mapped() method to traverse recordset relations.
We will write a method to retrieve the names of authors from the recordset of books,
passed as an argument.

Traversing recordset relations 173

Getting ready
We will reuse the library.book model that was shown in the Creating new records
recipe in this chapter.

How to do it...
To get the names of authors from the book recordset, you need to perform the following
steps:

1. Define a method called get_author_names():

 @api.model

 def get_author_names(self, books):

2. Call mapped() to get the email addresses of the contacts of the partner:

 return books.mapped('author_ids.name')

How it works...
Step 1 is just defining the method. In step 2, we call the mapped(path) method to
traverse the fields of the recordset; path is a string that contains field names separated
by dots. For each field in the path, mapped() produces a new recordset that contains all
the records related by this field to all elements in the current recordset, and then the next
element in the path applies to that new recordset. If the last field in the path is a relational
field, mapped() will return a recordset; otherwise, a Python list is returned.

The mapped() method has two useful properties:

• If the path is a single scalar field name, then the returned list is in the same order as
the processed recordset.

• If the path contains a relational field, then the order is not preserved, but duplicates
are removed from the result.

Important information
This second property is very useful when you want to perform an operation on
all the records that are pointed to by a Many2many field for all the records in
self, but you need to ensure that the action is performed only once (even if
two records of self share the same target record).

174 Basic Server-Side Development

There's more...
When using mapped(), keep in mind that it operates in memory inside the Odoo server
by repeatedly traversing relations and therefore making SQL queries, which may not be
efficient. However, the code is terse and expressive. If you are trying to optimize a method
on the critical path of the performance of your instance, you may want to rewrite the call
to mapped() and express it as search() with the appropriate domain, or even move to
SQL (at the cost of readability).

The mapped() method can also be called with a function as an argument. In this case,
it returns a list containing the result of the function that's applied to each record of self,
or the union of the recordsets that's returned by the function, if the function returns
a recordset.

See also
• The Searching for records recipe in this chapter

• The Executing raw SQL queries recipe in Chapter 8, Advanced Server-Side
Development Techniques

Sorting recordsets
When you fetch a recordset with the search() method, you can pass an optional
argument order to get a recordset that's in a particular order. This is useful if you already
have a recordset from a previous bit of code and you want to sort it. It may also be useful
if you use a set operation to combine two recordsets, for example, which would cause the
order to be lost.

This recipe shows you how to use the sorted() method to sort an existing recordset.
We will sort books by release date.

Getting ready
We will reuse the library.book model that was shown in the Creating new records
recipe in this chapter.

Sorting recordsets 175

How to do it...
You need to perform the following steps to get the sorted recordset of books based on
release_date:

1. Define a method called sort_books_by_date():

 @api.model

 def sort_books_by_date(self, books):

2. Use the sorted() method, as in the given example, to sort book records based on
the release_date field:

 return books.sorted(key='release_date')

How it works...
Step 1 is just defining the method. In step 2, we call the sorted() method in the
recordset of books. Internally, the sorted() method will fetch the data of the field
that's passed as the key argument. Then, by using Python's native sorted method, it
returns a sorted recordset.

It also has one optional argument, reverse=True, which returns a recordset in reverse
order. reverse is used as follows:

books.sorted(key='release_date', reverse=True)

There's more...
The sorted() method will sort the records in a recordset. Called without arguments,
the _order attribute of the model will be used. Otherwise, a function can be passed to
compute a comparison key in the same way as the Python built-in sorted (sequence, key)
function.

Important note
When the default _order parameter of the model is used, the sorting is
delegated to the database, and a new SELECT function is performed to get
the order. Otherwise, the sorting is performed by Odoo. Depending on what is
being manipulated, and depending on the size of the recordsets, there might be
some important performance differences.

176 Basic Server-Side Development

Extending the business logic defined in
a model
It is a very common practice in Odoo to divide application features into different
modules. By doing so, you can simply enable/disable features by installing/uninstalling
the application. And when you add new features to the existing app, it then becomes
necessary to customize the behavior of some methods that were defined in the original
app. Sometimes, you also want to add new fields to an existing model. This is a very easy
task in Odoo, and one of the most powerful features of the underlying framework.

In this recipe, we will see how you can extend the business logic of one method from the
method in another module. We will also add new fields to an existing module from the
new module.

Getting ready
For this recipe, we will continue to use the my_library module from the last recipe.
Make sure that you have the library.book.category model in the my_library
module.

For this recipe, we will create a new module called my_library_return, which
depends on the my_library module. In this module, we will manage return dates for
the borrowed book. We will also automatically calculate the return date based on the
category.

In the Adding features to a model using inheritance recipe in Chapter 4, Application Models,
we saw how to add a field to the existing model. In this module, extend the library.
book model as follows:

class LibraryBook(models.Model):

 _inherit = 'library.book'

 date_return = fields.Date('Date to return')

Then, extend the library.book.category model, as follows:

class LibraryBookCategory(models.Model):

 _inherit = 'library.book.category'

 max_borrow_days = fields.Integer(

 'Maximum borrow days',

Extending the business logic defined in a model 177

 help="For how many days book can be borrowed",

 default=10)

To add this field in views, you need to follow the Changing existing views – view
inheritance recipe from Chapter 9, Backend Views. You can find a full example of the
code at https://github.com/PacktPublishing/Odoo-13-Development-
Cookbook-Fourth-Edition.

How to do it...
To extend the business logic in the library.book model, you need to perform the
following steps:

1. From my_library_return, we want to set date_return in the books record
when we change the book status to Borrowed. For this, we will override the
make_borrowed method from the my_module_return module:

def make_borrowed(self):

 day_to_borrow = self.category_id.max_borrow_days or
10

 self.date_return = fields.Date.today() +
timedelta(days=day_to_borrow)

 return super(LibraryBook, self).make_borrowed()

2. We also want to reset date_return when the book is returned and available to
borrow, so we will override the make_available method to reset the date:

 def make_available(self):

 self.date_return = False

 return super(LibraryBook, self).make_available()

How it works...
Steps 1 and 2 carry out the extension of the business logic. We define a model that extends
library.books and redefines the make_borrowed() and make_available()
methods. In the last line of both methods, the result that was implemented by the parent
class is returned:

return super(LibraryBook, self).make_borrowed()

https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition

178 Basic Server-Side Development

In the case of Odoo models, the parent class is not what you'd expect by looking at the
Python class definition. The framework has dynamically generated a class hierarchy for
our recordset, and the parent class is the definition of the model from the modules that we
depend on. So, the call to super() brings back the implementation of library.book
from my_module. In this implementation, make_borrowed() changes the state of the
book to Borrowed. So, calling super() will invoke the parent method and it will set the
book state to Borrowed.

There's more...
In this recipe, we choose to extend the default implementation of the methods. In the
make_borrow() and make_available() methods, we modified the returned result
before the super() call. Note that, when you call super(), it will execute the default
implementation. It is also possible to perform some actions after the super() call. Of
course, we can also do both at the same time.

However, it is more difficult to change the behavior of the middle of a method. To do this,
we will need to refactor the code so that we can extract an extension point to a separate
method and override this new method in the extension module.

You may be tempted to completely rewrite a method. Always be very cautious when doing
so. If you do not call the super() implementation of your method, you are breaking
the extension mechanism and potentially breaking the add-ons that extend the method,
meaning that the extension methods will never be called. Unless you are working in a
controlled environment in which you know exactly which add-ons are installed and
you've checked that you are not breaking them, avoid doing this. Also, if you have to,
ensure that you document what you are doing in a very visible way.

What can you do before and after calling the original implementation of the method?
There are lots of things, including (but not limited to) the following:

• Modifying the arguments that are passed to the original implementation (before)

• Modifying the context that is passed to the original implementation (before)

• Modifying the result that is returned by the original implementation (after)

• Calling another method (before and after)

• Creating records (before and after)

• Raising a UserError error to cancel the execution in forbidden cases
(before and after)

• Splitting self into smaller recordsets, and calling the original implementation on
each of the subsets in a different way (before)

Extending write() and create() 179

Extending write() and create()
The Extending the business logic defined in a model recipe from this chapter showed us
how to extend methods that are defined on a model class. If you think about it, methods
that are defined on the parent class of the model are also part of the model. This means
that all the base methods that are defined on models.Model (actually, on models.
BaseModel, which is the parent class of models.Model) are also available and can be
extended.

This recipe shows you how to extend create() and write() to control access to some
fields of the records.

Getting ready
We will extend the library example from the my_library add-on module in Chapter 3,
Creating Odoo Add-On Modules.

Add a manager_remarks field to the library.book model. We only want members
of the Library Managers group to be able to write to that field:

from odoo import models, api, exceptions

class LibraryBook(models.Model):

 _name = 'library.book'

 manager_remarks = fields.Text('Manager Remarks')

Add the manager_remarks field to the <form> view of the view/library_book.
xml file to access this field from the user interface:

 <field name="manager_remarks"/>

Modify the security/ir.model.access.csv file to give write access to library
users:

id,name,model_id:id,group_id:id,perm_read,perm_write,perm_
create,perm_unlink

acl_book_user,library.book_default,model_library_book,base.
group_user,1,1,0,0

acl_book_librarian,library.book_librarian,model_library_
book,group_librarian,1,1,1,1

180 Basic Server-Side Development

How to do it...
To prevent users who are not members of the librarian group from modifying the value of
manager_remarks, you need to perform the following steps:

1. Extend the create() method, as follows:

 @api.model

 def create(self, values):

 if not self.user_has_groups('my_library.acl_book_
librarian'):

 if 'manager_remarks' in values:

 raise UserError(

 'You are not allowed to modify '

 'manager_remarks'

)

 return super(LibraryBook, self).create(values)

2. Extend the write() method, as follows:

 def write(self, values):

 if not self.user_has_groups('my_library.acl_book_
librarian'):

 if 'manager_remarks' in values:

 raise UserError(

 'You are not allowed to modify '

 'manager_remarks'

)

 return super(LibraryBook, self).write(values)

Install the module to see the code in action. Now, only a manager type of user can modify
the manager_remarks field. To test this implementation, you can log in as a demo user
or revoke librarian access from the current user.

Extending write() and create() 181

How it works...
Step 1 redefines the create() method. Before calling the base implementation of
create(), our method uses the user_has_groups() method to check whether
the user belongs to the my_library.group_librarian group (this is the XML
ID of the group). If this is not the case and a value is passed for manager_remarks,
a UserError exception is raised, preventing the creation of the record. This check is
performed before the base implementation is called.

Step 2 does the same thing for the write() method. Prior to writing, we check the group
and the presence of the field in the values to write and raise a UserError exception if
there is a problem.

Important note
Having the field set to read-only in the web client does not prevent RPC calls
from writing it. This is why we extend create() and write().

In this recipe, you have seen how you can override the create() and write()
methods. But note that this is not limited to the create() and write() methods.
You can override any model method. For example, let's say you want to do something
when the record is deleted. To do so, you need to override the unlink() method
(the unlink() method will be called when the record is deleted). Here is the small code
snippet to override the unlink() method:

def unlink(self):

 # your logic

 return super(LibraryBook, self).unlink()

Warning
When overriding a method in Odoo, never forgot to call the super()
method, otherwise you will encounter an issue. This is because when you don't
use the super() method, the code in the original method is never executed.
If, in our previous code snippet, we didn't call super(…).unlink(),
records would not be deleted.

There's more...
When extending write(), note that, before calling the super() implementation of
write(), self is still unmodified. You can use this to compare the current values of the
fields to the ones in the values dictionary.

182 Basic Server-Side Development

In this recipe, we chose to raise an exception, but we could have also chosen to remove
the offending field from the values dictionary and silently skipped updating that field in
the record:

def write(self, values):

 if not self.user_has_groups('my_library.group_
librarian'):

 if 'manager_remarks' in values:

 del values['manager_remarks']

 return super(LibraryBook, self).write(values)

After calling super().write(), if you want to perform additional actions, you have to
be wary of anything that can cause another call to write(), or you will create an infinite
recursion loop. The workaround is to put a marker in the context that will be checked to
break the recursion:

class MyModel(models.Model):

 def write(self, values):

 sup = super(MyModel, self).write(values)

 if self.env.context.get('MyModelLoopBreaker'):

 return

 self = self.with_context(MyModelLoopBreaker=True)

 self.compute_things() # can cause calls to writes

 return sup

In the preceding example, we have added the MyModelLoopBreaker key before calling
the compute_things() method. So, if the write() method is called again, it doesn't
go in an infinite loop.

Customizing how records are searched
The Defining the model representation and order recipe in Chapter 3, Creating Odoo
Add-On Modules, introduced the name_get() method, which is used to compute a
representation of the record in various places, including in the widget that's used to
display Many2one relations in the web client.

This recipe will show you how to search for a book in the Many2one widget by title,
author, or ISBN by redefining name_search.

Customizing how records are searched 183

Getting ready
For this recipe, we will use the following model definition:

class LibraryBook(models.Model):

 _name = 'library.book'

 name = fields.Char('Title')

 isbn = fields.Char('ISBN')

 author_ids = fields.Many2many('res.partner', 'Authors')

 def name_get(self):

 result = []

 for book in self:

 authors = book.author_ids.mapped('name')

 name = '%s (%s)' % (book.name, ', '.join(authors))

 result.append((book.id, name))

 return result

When using this model, a book in a Many2one widget is displayed as Book Title
(Author1, Author2...). Users expect to be able to type in an author's name and find the
list filtered according to this name, but this will not work since the default implementation
of name_search only uses the attribute referred to by the _rec_name attribute of
the model class, which, in our case, is 'name'. We also want to allow filtering by ISBN
number.

How to do it...
You need to perform the following steps in order to execute this recipe:

1. To be able to search for library.book either by the book's title, one of the
authors, or the ISBN number, you need to define the _name_search() method
in the LibraryBook class, as follows:

 @api.model

 def _name_search(self, name='', args=None,
operator='ilike',

 limit=100, name_get_uid=None):

 args = [] if args is None else args.copy()

 if not(name == '' and operator == 'ilike'):

 args += ['|', '|',

184 Basic Server-Side Development

 ('name', operator, name),

 ('isbn', operator, name),

 ('author_ids.name', operator, name)

]

 return super(LibraryBook, self)._name_search(

 name=name, args=args, operator=operator,

 limit=limit, name_get_uid=name_get_uid)

2. Add the old_editions Many2one field in the library.book model to test
the _name_search implementation:

old_edition = fields.Many2one('library.book', string='Old
Edition')

3. Add the following field to the user interface:

<field name="old_edition" />

4. Restart and update the module to reflect these changes.

You can invoke the _name_search method by searching in the old_edition
Many2one field.

How it works...
The default implementation of name_search() actually only calls the _name_
search() method, which does the real job. This _name_search() method has an
additional argument, name_get_uid, which is used in some corner cases such as if you
want to compute the results using sudo() or with a different user.

We pass most of the arguments that we receive unchanged to the super()
implementation of the method:

• name is a string that contains the value the user has typed so far.

• args is either None or a search domain that's used as a prefilter for the possible
records. (It can come from the domain parameter of the Many2one relation, for
instance.)

• operator is a string containing the match operator. Generally, you will have
'ilike' or '='.

Customizing how records are searched 185

• limit is the maximum number of rows to retrieve.

• name_get_uid can be used to specify a different user when calling name_get()
to compute the strings to display in the widget.

Our implementation of the method does the following:

1. It generates a new empty list if args is None, and makes a copy of args otherwise.
We make a copy to avoid our modifications to the list having side effects on the
caller.

2. Then, we check that name is not an empty string or that operator is not
'ilike'. This is to avoid generating a dumb domain, [('name', ilike,
'')], that doesn't filter anything. In this case, we jump straight to the super()
call implementation.

3. If we have name, or if operator is not 'ilike', then we add some filtering
criteria to args. In our case, we add clauses that will search for the supplied name
in the title of the books, in their ISBNs, or in the authors' names.

4. Finally, we call the super() implementation with the modified domain in args
and force name to be '' and operator to be ilike. We do this to force the
default implementation of _name_search() to not alter the domain it receives,
and so the one we specified will be used.

There's more...
We mentioned in the introduction that this method is used in the Many2one widget. For
completeness, it is also used in the following parts of Odoo:

• When using the in operator on the One2many and Many2many fields in the
domain

• To search for records in the many2many_tags widget

• To search for records in the CSV file import

See also
The Defining the model representation and order recipe in Chapter 3, Creating Odoo
Add-On Modules, demonstrates how to define the name_get() method, which is used to
create a text representation of a record.

The Defining filters on record lists – domain recipe in Chapter 9, Backend Views, provides
more information about search domain syntax.

186 Basic Server-Side Development

Fetching data in groups using read_group()
In the previous recipes, we saw how we can search and fetch data from the database. But
sometimes, you want results by aggregating records, such as the average cost of last month's
sales order. Usually, we use group by and the aggregate function in SQL queries for
such a result. Luckily, in Odoo, we have the read_group() method. In this recipe, you
will learn how to use the read_group() method to get the aggregate result.

Getting ready
In this recipe, we will use the my_library add-on module from Chapter 3, Creating
Odoo Add-On Modules.

Modify the library.book model, as shown in the following model definition:

class LibraryBook(models.Model):

 _name = 'library.book'

 name = fields.Char('Title', required=True)

 date_release = fields.Date('Release Date')

 pages = fields.Integer('Number of Pages')

 cost_price = fields.Float('Book Cost')

 category_id = fields.Many2one('library.book.category')

 author_ids = fields.Many2many('res.partner',
string='Authors')

Add the library.book.category model. For simplicity, we will just add it to the
same library_book.py file:

class BookCategory(models.Model):

 _name = 'library.book.category'

 name = fields.Char('Category')

 description = fields.Text('Description')

We will be using the library.book model and getting an average cost price per
category.

Fetching data in groups using read_group() 187

How to do it...
To extract grouped results, we will add the _get_average_cost method to the
library.book model, which will use the read_group() method to fetch the data in
a group:

 @api.model

 def _get_average_cost(self):

 grouped_result = self.read_group(

 [('cost_price', "!=", False)], # Domain

 ['category_id', 'cost_price:avg'], # Fields to
access

 ['category_id'] # group_by

)

 return grouped_result

To test this implementation, you need to add a button to the user interface that triggers
this method. Then, you can print the result in the server log.

How it works...
The read_group() method internally uses the SQL groupby and aggregate
functions to fetch the data. The most common arguments that are passed to the
read_group() method are as follows:

• domain: This is used to filter records for grouping. For more information on the
domain, refer to the Searching views recipe in Chapter 9, Backend Views.

• fields: This passes the names of fields you want to fetch with the grouped data.
Possible values for this argument are as follows:

field name: You can pass the field name into the fields argument, but if you
are using this option, then you must pass this field name to the groupby parameter
too, otherwise it will generate an error.

field_name:agg: You can pass the field name with the aggregate function.
For example, in cost_price:avg, avg is a SQL aggregate function. A list of
PostgreSQL aggregate functions can be found at https://www.postgresql.
org/docs/current/static/functions-aggregate.html.

name:agg(field_name): This is the same as the previous one, but, with
this syntax, you can provide column aliases, such as average_
price:avg(cost_price).

https://www.postgresql.org/docs/current/static/functions-aggregate.html
https://www.postgresql.org/docs/current/static/functions-aggregate.html

188 Basic Server-Side Development

• groupby: This argument accepts a list of field descriptions. Records will be
grouped based on these fields. For the date and datetime column, you can pass
groupby_function to apply date groupings based on different time durations,
such as date_release:month. This will apply groupings based on months.

• read_group() also supports some optional arguments, as follows:

offset: This indicates an optional number of records to skip.

limit: This indicates an optional maximum number of records to return.

orderby: If this option is passed, the result will be sorted based on the given fields.

lazy: This accepts Boolean values and, by default, is True. If True is passed, the
results are only grouped by the first groupby and the remaining groupby are put
in the __context key. If False, all groupby function are done in one call.

Performance tip
read_group() is a lot faster than reading and processing values from
a recordset. So, for KPIs or graphs, you should always use read_group().

6
Managing

Module Data
In this chapter, we'll look at how add-on modules can provide data at installation time.
This is useful for us when providing default values, adding metadata, such as view
descriptions, menus, or actions. Another important usage is providing demonstration
data, which is loaded when the database is created with the Load demonstration data
checkbox checked.

In this chapter, we will cover the following recipes:

• Using external IDs and namespaces

• Loading data using XML files

• Using the noupdate and forcecreate flags

• Loading data using CSV files

• Add-on updates and data migration

• Deleting records from XML files

• Invoking functions from XML files

190 Managing Module Data

Technical requirements
The technical requirements for this chapter include the online Odoo platform.

All the code that's used in this chapter can be downloaded from the following GitHub
repository:

https://github.com/PacktPublishing/Odoo-13-Development-
Cookbook-Fourth-Edition/tree/master/Chapter06

In order to avoid repeating a lot of code, we'll make use of the models that were defined in
Chapter 4, Application Models. To follow these examples, make sure you grab the code for
the my_library module from Chapter04/r6_hierarchy_model/my_library.

Using external IDs and namespaces
External IDs or XML IDs in Odoo are used to identify records. So far in this book, we
have used XML IDs in areas such as views, menus, and actions. However, we haven't seen
what an XML ID actually is. This recipe will give you a deeper understanding.

How to do it...
We will write in the already-existing records to demonstrate how to use cross-module
references:

1. Update the manifest file of the my_library module by registering a data file
like this:

 'data': [

 'data/data.xml',

],

2. Create a new book in the library.book model:

<record id="book_cookbook" model="library.book">

 <field name="name"> Odoo 14 Development Cookbook </
field>

</record>

https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/tree/master/Chapter06

Using external IDs and namespaces 191

3. Change the name of the main company:

<record id="base.main_company" model="res.company">

 <field name="name">Packt publishing</field>

</record>

Install the module to apply the changes. After installation, a new record for the book Odoo
14 Development Cookbook will be created and the company will be renamed to Packt
publishing.

How it works...
An XML ID is a string that refers to a record in the database. The IDs themselves are
records of the ir.model.data model. This model contains the data such as the module
name that declares the XML ID, the ID string, the referred model, and the referred ID.

Every time we use an XML ID on a <record> tag, Odoo checks whether the string is
namespaced (that is, whether it contains exactly one dot), and, if not, it adds the current
module name as a namespace. Then, it looks up whether there is already a record in
ir.model.data with the specified name. If so, an UPDATE statement for the listed
fields is executed; if not, a CREATE statement is executed. This is how you can provide
partial data when a record already exists, as we did earlier.

In the first example of this recipe, the record has the ID book_cookbook. As it is not
namespaced, the final external ID will have a module name like this: my_library.
book_cookbook. Then Odoo will try to find a record for my_library.book_
cookbook. As Odoo doesn't have a record for that external ID yet, it will generate the
new record in the library.book model.

In the second example, we have used the external ID of the main company, which is
base.main_company. As its namespace suggests, it is loaded from the base module.
As the external ID is already present, instead of creating a record, Odoo will perform
the write (UPDATE) operation so the company name will be changed to Packt
publishing.

192 Managing Module Data

Important note
A widespread application for partial data, apart from changing records defined
by other modules, is using a shortcut element to create a record in a convenient
way and writing a field on that record, which is not supported by the
shortcut element:
<act_window id="my_action" name="My action"
model="res.partner" />
<record id="my_action" model="ir.actions.act_
window">
 <field name="auto_search" eval="False" />
</record>

The ref function, as used in the Loading data using XML files recipe of this chapter, also
adds the current module as a namespace if appropriate, but raises an error if the resulting
XML ID does not exist already. This also applies to the id attribute if it is not namespaced
already.

Tip
If you want to see the list of all external identifiers, start developer mode and
open the menu to Settings | Technical | Sequence & Identifiers | External
Identifiers.

There's more...
You will probably need to access records with an XML ID from your Python code sooner
or later. Use the self.env.ref() function in these cases. This returns a browse record
(recordset) of the referenced record. Note that here, you always have to pass the full XML
ID. Here's an example of a full XML ID: <module_name>.<record_id>.

You can see the XML ID of any record from the user interface. For that, you need to
activate developer mode in Odoo. Refer to Chapter 1, Installing the Odoo Development
Environment, to activate developer mode in Odoo. After activating the developer mode,
open the Form View of the record for which you want to find out the XML ID. You will
see a bug icon in the top bar. From that menu, click on the View Metadata option. See the
following screenshot for reference:

Loading data using XML files 193

Figure 6.1 – Menu to open a record's metadata

See also
Consult the Using the noupdate and forcecreate flags recipe of this chapter to find out why
the company's name is only changed during the installation of the module.

Loading data using XML files
In the previous recipe, we created the new book record with the external identifier book_
cookbook. In this recipe, we will add a different type of data from the XML file. We'll
add a book and an author as demonstration data. We'll also add a well-known publisher as
normal data in our module.

194 Managing Module Data

How to do it...
Follow the given steps to create two data XML files and link them in your __
manifest__.py file:

1. Add a file called data/demo.xml to your manifest, in the demo section:

 'demo': [

 'data/demo.xml',

],

2. Add the following content to this file:

<odoo>
 <record id="author_pga" model="res.partner">
 <field name="name">Parth Gajjar</field>
 </record>

 <record id="author_af" model="res.partner">

 <field name="name">Alexandre Fayolle</field>

 </record>

 <record id="author_dr" model="res.partner">

 <field name="name">Daniel Reis</field>

 </record>

 <record id="author_hb" model="res.partner">

 <field name="name">Holger Brunn</field>

 </record>

 <record id="book_cookbook" model="library.book">

 <field name="name">Odoo Cookbook</field>

 <field name="short_name">cookbook</field>

 <field name="date_release">2016-03-01</field>

 <field name="author_ids"
 eval="[(6, 0, [ref('author_af'),
ref('author_dr'),
 ref('author_hb')])]"

/>

 <field name="publisher_id" ref="res_partner_
packt" />

 </record>

</odoo>

Loading data using XML files 195

3. Add a file called data/data.xml to your manifest, in the data section:

 'data': [

 'data/data.xml',
 ...

],

4. Add the following XML content to the data/data.xml file:

<odoo>

 <record id="res_partner_packt" model="res.partner">

 <field name="name">Packt Publishing</field>

 <field name="city">Birmingham</field>

 <field name="country_id" ref="base.uk" />

 </record>

</odoo>

When you update your module now, you'll see the publisher we created, and, if your
database has demo data enabled, as pointed out in Chapter 3, Creating Add-On Odoo
Modules, you'll also find this book and its authors.

How it works...
The data XML files uses the <record> tag to create a row in the database table. The
<record> tag has two mandatory attributes, id and model. For the id attribute, consult
the Using external IDs and namespaces recipe; the model attribute refers to a model's _
name property. Then, we use the <field> element to fill the columns in the database, as
defined by the model you named. The model also decides which fields it is mandatory to
fill and also defines the default values. In this case, you don't need to give those fields
a value explicitly.

There are two ways to register data XML files in a module manifest. One with the data
key and the second is with the demo key. The XML files in the data key are loaded every
time you install or update the module. While XML files with demo keys are loaded only if
you enabled demo data for your database.

In step 1, we registered a data XML file in the manifest with the demo key. Because we
are using the demo key, the XML file will be loaded only if you have enabled demo data
for the database.

196 Managing Module Data

In step 2, the <field> element can contain a value as simple text in the case of scalar
values. If you need to pass the content of a file (to set an image, for example), use the
file attribute on the <field> element and pass the file's name relative to the
add-ons path.

For setting up references, there are two possibilities. The simplest is using the ref
attribute, which works for many2one fields and just contains the XML ID of the record to
be referenced. For one2many and many2many fields, we need to use the eval attribute.
This is a general-purpose attribute that can be used to evaluate Python code to use as
the field's value; think of strftime('%Y-01-01') as an example to populate a date
field. X2many fields expect to be populated by a list of three tuples, where the first value
of the tuple determines the operation to be carried out. Within an eval attribute, we
have access to a function called ref, which returns the database ID of an XML ID given
as a string. This allows us to refer to a record without knowing its concrete ID, which is
probably different in different databases, as shown here:

• (2, id, False): This deletes the linked record with id from the database. The
third element of the tuple is ignored.

• (3, id, False): This detaches the record with id, from the one2many field.
Note that this operation does not delete the record—it just leaves the existing record
as it is. The last element of the tuple is also ignored.

• (4, id, False): This adds a link to the existing record id and the last element
of the tuple is ignored. This should be what you use most of the time, usually
accompanied by the ref function to get the database ID of a record known by its
XML ID.

• (5, False, False): This cuts all links but keeps the linked records intact.

• (6, False, [id, ...]): This clears out currently referenced records to
replace them with the ones mentioned in the list of IDs. The second element of the
tuple is ignored.

Steps 3 and 4 are the same as the first two; they just use the data key instead of the demo
key. This means the XML files will be loaded every time a module is installed or upgraded.

Loading data using XML files 197

Important note
Note that order matters in data files and that records within data files can only
refer to records defined in data files earlier in the list. This is why you should
always check whether your module installs in an empty database, because
during development, you often add records all over the place, which works
because the records defined afterward are already in the database from an
earlier update.

Demo data is always loaded after the files from the data key, which is why the
reference in this example works.

There's more...
While you can do basically anything with the record element, there are shortcut
elements that make it more convenient for the developer to create certain kinds of records.
These include menu items, templates, and act windows. Refer to Chapter 9, Backend
Views, and Chapter 14, CMS Website Development, for information about these.

A field element can also contain the function element, which calls a function defined
on a model to provide a field's value. Refer to the Invoking functions from XML files recipe
for an application in which we simply call a function to directly write to the database,
circumventing the loading mechanism.

The preceding list misses entries for 0 and 1 because they are not very useful when
loading the data. They are entered, as follows, for the sake of completeness:

• (0, False, {'key': value}): This creates a new record of the referenced
model, with its fields filled from the dictionary at position three. The second
element of the tuple is ignored. As these records don't have an XML ID and are
evaluated every time the module is updated, leading to double entries, it's better
to avoid this. Instead, create the record in its own record element, and link it as
explained in the How it works section of this recipe.

• (1, id, {'key': value}): This can be used to write on an existing linked
record. For the same reasons that we mentioned earlier, you should avoid this
syntax in your XML files.

These syntaxes are the same as the ones we explained in the Creating new records and
Updating values of records recipes in Chapter 5, Basic Server-Side Development.

198 Managing Module Data

Using the noupdate and forcecreate flags
Most add-on modules have different types of data. Some data simply needs to exist for the
module to work properly, other data shouldn't be changed by the user, and most data can
be changed as the user wants and is only provided as a convenience. This recipe will detail
how to address the different types. First, we'll write a field in an already-existing record,
and then we'll create a record that is supposed to be recreated during a module update.

How to do it...
We can enforce different behaviors from Odoo when loading data by setting certain
attributes on the enclosing <odoo> element or the <record> element itself:

1. Add a publisher that will be created at installation time, but not updated on
subsequent updates. However, if the user deletes it, it will be recreated:

<odoo noupdate="1">

 <record id="res_partner_packt" model="res.partner">

 <field name="name">Packt publishing</field>
 <field name="city">Birmingham</field>
 <field name="country_id" ref="base.uk"/>

 </record>

</odoo>

2. Add a book category that is not changed during add-on updates and is not recreated
if the user deletes it:

<odoo noupdate="1">

 <record id="book_category_all" model="library.book.
category"
 forcecreate="false">

 <field name="name">All books</field>

 </record>

</odoo>

How it works...
The <odoo> element can have a noupdate attribute, which is propagated to the
ir.model.data records that are created when reading the enclosed data records for the
first time, thus ending up as a column in this table.

Using the noupdate and forcecreate flags 199

When Odoo installs an add-on (called init mode), all records are written, whether
noupdate is true or false. When you update an add-on (called the update mode),
the existing XML IDs are checked to see whether they have the noupdate flag set, and if
so, elements that try to write to this XML ID are ignored. This is not the case if the record
in question was deleted by the user, which is why you can force not recreating noupdate
records in the update mode by setting the forcecreate flag on the record to false.

Important note
In legacy add-ons (prior to and including version 8.0), you'll often find
an <openerp> element enclosing a <data> element, which contains
<record> and other elements. This is still possible, but deprecated. Now,
<odoo>, <openerp>, and <data> have exactly the same semantics; they
are meant as a bracket to enclose XML data.

There's more...
If you want to load records even with the noupdate flag, you can run the Odoo server
with the --init=your_addon or -i your_addon parameter. This will force Odoo
to reload your records. This will also cause deleted records to be recreated. Note that
this can cause double records and related installation errors if a module circumvents
the XML ID mechanism, for example, by creating records in Python code called by the
<function> tag.

With this code, you can circumvent any noupdate flag, but first, make sure that this is
really what you want. Another option for solving the scenario presented here is to write
a migration script, as outlined in the Add-on updates and data migration recipe.

See also
Odoo also uses XML IDs to keep track of which data is to be deleted after an add-on
update. If a record has an XML ID from the module's namespace before the update, but
the XML ID is not reinstated during the update, the record and its XML ID will be deleted
from the database because they're considered obsolete. For a more in-depth discussion of
this mechanism, refer to the Add-on updates and data migration recipe.

200 Managing Module Data

Loading data using CSV files
While you can do everything you need to with XML files, this format is not the most
convenient when you need to provide larger amounts of data, especially given that many
people are more comfortable preprocessing data in Calc or other spreadsheet software.
Another advantage of the CSV format is that it is what you get when you use the standard
export function. In this recipe, we'll take a look at importing table-like data.

How to do it...
Traditionally, access-control lists (ACLs – refer to Chapter 10, Security Access) are a type
of data that is loaded through CSV files:

1. Add security/ir.model.access.csv to your data files:

'data': [

 ...

 'security/ir.model.access.csv',

],

2. Add an ACL for our books in this file (we already have a few records from the
Adding access security recipe from Chapter 3, Creating Odoo Add-On Modules):

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink
acl_library_book_user,ACL for books,model_library_
book,base.group_user,1,0,0,0

We now have an ACL that permits normal users to read book records, but does not allow
them to edit, create, or delete them.

How it works...
You simply drop all your data files in your manifest's data list. Odoo will use the file
extension to decide which type of file it is. A specialty of CSV files is that their filename
must match the name of the model to be imported, in our case, ir.model.access.
The first line needs to be a header with column names that match the model's field
names exactly.

For scalar values, you can use a quoted (if necessary, because the string contains quotes or
commas itself) or an unquoted string.

Loading data using CSV files 201

When writing many2one fields with a CSV file, Odoo first tries to interpret the column
value as XML ID. If there's no dot, Odoo adds the current module name as a namespace
and looks up the result in ir.model.data. If this fails, the model's name_search
function is called with the column's value as a parameter, and the first result returned
wins. If this also fails, the line is considered invalid and Odoo raises an error.

Important note
Note that data read from CSV files is always noupdate=False, and there's
no convenient way around this. This means that subsequent updates of your
add-on will always overwrite possible changes made by the user.
If you need to load huge amounts of data and noupdate is a problem for
you, load a CSV file from an init hook.

There's more...
Importing the one2many and many2many fields with CSV files is possible, but a bit
tricky. In general, you're better off creating the records separately and setting up the
relation with an XML file afterward, or working with a second CSV file that sets up the
relationship.

If you really need to create related records within the same file, order your columns
so that all scalar fields are to the left and the fields of the linked model are to the right,
with a column header consisting of the linking field's name and the linked model's field,
separated by a colon:

"id","name","model_id:id","perm_read","perm_read", "group_
id:name"

"access_library_book_user","ACL for books","model_library_
book",1,
"my group"

This will create a group called my group; you can write more fields in the group record
by adding columns to the right. If you need to link multiple records, repeat the line and
change the right-hand side columns as appropriate. Given that Odoo fills empty columns
with the previous line's value, you don't need to copy all the data—you can simply add
a line with empty values saved for the fields of the linked model you want to fill.

For x2m fields, just list the XML IDs of the records to be linked.

202 Managing Module Data

Add-on updates and data migration
The data model you choose when writing an add-on module might turn out to have some
weaknesses, so you may need to adjust it during the life cycle of your add-on module. In
order to allow that without a lot of hacks, Odoo supports versioning in add-on modules
and running migrations if necessary.

How to do it...
We assume that in an earlier version of our module, the date_release field was
a character field, where people wrote whatever they saw fit as the date. We now realize that
we need this field for comparisons and aggregations, which is why we want to change its
type to Date.

Odoo does a great job at type conversions, but, in this case, we're on our own, which is
why we need to provide instructions as to how to transform a database with the previous
version of our module installed on a database where the current version can run. Let's try
this with the following steps:

1. Bump the version in your __manifest__.py file:

 'version': '13.0.1.0.1',

2. Provide the pre-migration code in migrations/13.0.1.0.1/pre-
migrate.py:

def migrate(cr, version):

 cr.execute('ALTER TABLE library_book RENAME COLUMN
date_release
 TO date_
release_char')

3. Provide the post-migration code in migrations/13.0.1.0.1/post-
migrate.py:

from odoo import fields

from datetime import date

def migrate(cr, version):

 cr.execute('SELECT id, date_release_char FROM
 library_book')

 for record_id, old_date in cr.fetchall():

 # check if the field happens to be set in Odoo's

Add-on updates and data migration 203

 internal

 # format

 new_date = None

 try:

 new_date = fields.Date.to_date(old_date)

 except ValueError:

 if len(old_date) == 4 and old_date.isdigit():

 # probably a year

 new_date = date(int(old_date), 1, 1)

 if new_date:

 cr.execute('UPDATE library_book SET date_
release=%s',
 (new_date,))

Without this code, Odoo would have renamed the old date_release column to
date_release_moved and created a new one, because there's no automatic conversion
from character fields to date fields. From the point of view of the user, the data in date_
release will simply be gone.

How it works...
The first crucial point is that you increase the version number of your add-on, as
migrations run only between different versions. During every update, Odoo writes the
version number from the manifest at the time of the update into the ir_module_
module table. The version number is prefixed with Odoo's major and minor versions
if the version number has three or fewer components. In the preceding example, we
explicitly named Odoo's major and minor version, which is good practice, but a value of
1.0.1 would have had the same effect, because, internally, Odoo prefixes short version
numbers for add-ons with its own major and minor version number. Generally, using the
long notation is a good idea because you can see at a glance which version of Odoo an
add-on is meant for.

The two migration files are just code files that don't need to be registered anywhere. When
updating an add-on, Odoo compares the add-on's version, as noted in ir_module_
module, with the version in the add-on's manifest. If the manifest's version is higher
(after adding Odoo's major and minor version), this add-on's migrations folder will
be searched to see whether it contains folders with the version(s) in-between, up to and
including the version that is currently updated.

204 Managing Module Data

Then, within the folders found, Odoo searches for Python files whose names start with
pre-, loads them, and expects them to define a function called migrate, which has two
parameters. This function is called with a database cursor as the first argument and the
currently-installed version as the second argument. This happens before Odoo even looks
at the rest of the code the add-on defines, so you can assume that nothing changes in your
database layout compared to the previous version.

After all the pre-migrate functions run successfully, Odoo loads the models and the
data declared in the add-on, which can cause changes in the database layout. Given that
we renamed date_release in pre-migrate.py, Odoo will just create a new column
with that name, but with the correct data type.

After that, with the same search algorithm, the post-migrate files will be searched and
executed if found. In our case, we need to look at every value to see whether we can make
something usable out of it; otherwise, we keep the data as NULL. Don't write scripts that
iterate over a whole table if not absolutely necessary; in this case, we would have written
a very big, unreadable SQL switch.

Important tip
If you simply want to rename a column, you don't need a migration script. In
this case, you can set the oldname parameter of the field in question to the
field's original column name; Odoo then takes care of the renaming itself.

There's more...
In both the pre- and post-migration steps, you only have access to a cursor, which is not
very convenient if you're used to Odoo environments. It can lead to unexpected results to
use models at this stage, because in the pre-migration step, the add-on's models are not yet
loaded, and also, in the post-migration step, the models defined by add-ons that depend
on the current add-on are not yet loaded either. However, if this is not a problem for you,
either because you want to use a model that your add-on doesn't touch or a model for
which you know that this issue is not a problem, you can create the environment you're
used to by writing the following:

from odoo import api, SUPERUSER_ID

def migrate(cr, version):

 env = api.Environment(cr, SUPERUSER_ID, {})

 # env holds all currently loaded models

Deleting records from XML files 205

See also
When writing migration scripts, you'll often be confronted with repetitive tasks, such
as checking whether a column or table exists, renaming things, or mapping some old
values to new values. It's frustrating and error-prone to reinvent the wheel here; consider
using https://github.com/OCA/openupgradelib if you can afford the extra
dependency.

Deleting records from XML files
In the previous recipes, we saw how we can create or update records from the XML
file. Sometimes, from the dependent module, you want to delete the previously created
records. This can be done with the <delete> tag.

Getting ready
In this recipe, we will add some categories from the XML file and then delete them. In real
situations, you will create this record from another module. But for simplicity, we will just
add some categories in the same XML file, as follows:

<record id="book_category_to_delete" model="library.book.
category">
 <field name="name">Test Category</field>
</record>
<record id="book_category_not_delete" model="library.book.
category">
 <field name="name">Test Category 2</field>
</record>

How to do it...
There are two ways to delete records from the XML file:

• With the XML ID of previously created records:

<delete model="library.book.category" id="book_category_
to_delete"/>

• With the search domain:

<delete model="library.book.category" search="[('name',
'ilike', 'Test')]"/>

https://github.com/OCA/openupgradelib

206 Managing Module Data

How it works...
You will need to use the <delete> tag. To delete a record from a model, you need to
provide the name of the model in the model attribute. This is a compulsory attribute.

In the first method, you need to provide the XML ID of the records that were previously
created from another module's data files. During the installation of the module, Odoo will
try to find the record. If the record is found for the given XML ID, it will delete the record,
otherwise, it will raise an error. You can delete only the records that are created from the
XML files (or records that have XML IDs).

In the second method, you need to pass the domain in the domain attribute. During the
installation of the module, Odoo will search the records by this domain. If records are
found, it deletes them. This option will not raise an error if no records match the given
domain. Use this option with extreme caution, because it might delete your user's data
since the search option deletes all the records that match the domain.

Warning
<delete> is rarely used in Odoo as it is dangerous. If you are not careful
with this, you might break the system. Avoid it if possible.

Invoking functions from XML files
You can create all types of records from XML files, but sometimes it is difficult to generate
data that includes some business logic. You might want to modify records when a user
installs a dependent module in production. For example, let's say you want to create
a module to display books online. The my_library module already has an image-
cover field. Imagine that, in the new module, you implemented logic to reduce the
size of the image and stored it in the new thumbnail field. Now, when the user installs
this module, they might already have books and images. It is not possible to generate
thumbnails from the <record> tags in the XML file. In this case, you can invoke the
model method through the <function> tag.

How to do it...
For this recipe, we will use the code from the previous recipe. As an example, we will
increase the existing book price by $10 USD. Note that you might use another currency
based on company configurations.

Invoking functions from XML files 207

Follow these steps to invoke the Python method from the XML file:

1. Add the _update_book_price() method in the library.book model:

@api.model
def _update_book_price(self):
 all_books = self.search([])
 for book in all_books:
 book.cost_price += 10

2. Add <function> in the data XML file:

<function model="library.book" name="_update_book_
price"/>

How it works...
In step 1, we added the _update_book_price() method, which searches for all
books and increases the price by $10 USD. We started the method name with _ as this is
considered private by ORM and cannot be invoked through RPC.

In step 2, we used the <function> tag with two attributes:

• model: The model name in which the method is declared

• name: The name of the method you want to invoke

When you install this module, _update_book_price() will be called and the price of
books will be increased by $10 USD.

Important note
Always put this function with the noupdate options. Otherwise, it will be
invoked every time you update your module.

There's more...
With <function>, it is also possible to send parameters to the functions. Let's say you
only want to increase the price of books in a particular category and you want to send that
amount as a parameter.

208 Managing Module Data

For that, you need to create a method that accepts the category as a parameter, as follows:

 @api.model
 def update_book_price(self, category, amount_to_increase):
 category_books = self.search([('category_id', '=',
category.id)])
 for book in category_books:
 book.cost_price += amount_to_increase

To pass the category and amount as a parameter, you need to use the eval attribute,
as follows:

<function model="library.book"
 name="update_book_price"
 eval="(ref('category_xml_id'), 20)"/>

When you install the module, it will increase the price of the books of the given
category by $20 USD.

7
Debugging Modules

In Chapter 5, Basic Server-Side Development, we saw how to write model methods to
implement the logic of our module. However, we may get stuck when we encounter errors
or logical issues. In order to resolve these errors, we need to perform a detailed inspection
and this may take time. Luckily, Odoo provides you with some debugging tools that can
help you to find the root cause of various issues. In this chapter, we will look at various
debugging tools and techniques in detail.

In this chapter, we will cover the following recipes:

• The auto-reload and --dev options

• Producing server logs to help debug methods

• Using the Odoo shell to interactively call methods

• Using the Python debugger to trace method execution

• Understanding the debug mode options

210 Debugging Modules

The auto-reload and --dev options
In the previous chapters, we saw how to add a model, fields, and views. Whenever we
make changes to Python files, we need to restart the server to apply those changes. If we
make changes in XML files, we need to restart the server and update the module to reflect
those changes in the user interface. If you are developing a large application, this can
be time-consuming and frustrating. Odoo provides a command-line option, --dev, to
overcome these issues. The --dev option has several possible values, and, in this recipe,
we will see each of them.

Getting ready
Install inotify in your developer environment with the following command in the shell.
Without inotify, the auto-reload feature will not work:

 $ pip3 install inotify

How to do it...
To enable the dev option, you need to use --dev=value from the command line.
Possible values for this option are all, reload, pudb|wdb|ipdb|pdb, qweb,
werkzeug, and xml. Take a look at the following example for more information:

$ odoo/odoo-bin -c ~/odoo-dev/my-instance.cfg --dev=all

If you want to enable only a few options, you can use comma-separated values, as follows:

$ odoo/odoo-bin -c ~/odoo-dev/my-instance.cfg --dev=reload,qweb

How it works...
Check the following list for all --dev options and their purposes:

• reload: Whenever you make changes in Python, you need to restart the server to
reflect those changes in Odoo. The --dev=reload option will reload the Odoo
server automatically when you make changes in any Python file. This feature will
not work if you have not installed the Python inotify package. When you run
Odoo server with this option server, you will see a log like this: AutoReload
watcher running with inotify.

Producing server logs to help debug methods 211

• qweb: You can create dynamic website pages in Odoo using QWeb templates. In
Chapter 14, CMS Website Development, we will see how to develop a web page with
the QWeb template. You can debug issues in the QWeb template with the t-debug
attribute. The t-debug options will only work if you enable the dev mode with
--dev=qweb.

• werkzeug: Odoo uses werkzeug to handle HTTP requests. Internally, Odoo
will catch and suppress all exceptions generated by werkzeug. If you use
--dev=werkzeug, werkzeug's interactive debugger will be displayed on the web
page when an exception is generated.

• xml: Whenever you make changes in the view structure, you need to reload the
server and update the module to apply those changes. With the --dev=xml option,
you just need to reload Odoo from the browser. There is no need to restart the
server or update the module.

• pudb|wdb|ipdb|pdb: You can use the Python debugger (PDB) to get more
information about the errors. When you use the --dev=pdb option, it will activate
the PDB whenever an exception is generated in Odoo. Odoo supports four Python
debuggers: pudb, wdb, ipdb, and pdb.

• all: If you use --dev=all, all of the preceding options will be enabled.

Important note
If you have made changes to the database structure, such as if you have added
new fields, the --dev=reload option will not reflect these in the database
schema. You need to update the module manually; it only works for Python
business logic.

If you add a new view or menu, the --dev=xml option will not reflect this
in the user interface. You need to update the module manually. This is very
helpful when you are designing the structure of the view or the website page.

If users have made changes in the view from the GUI, then --dev=xml will
not load the XML from the file. Odoo will use the view structure, which the
user changes.

Producing server logs to help debug methods
Server logs are useful when trying to figure out what has been happening at runtime
before a crash. They can also be added to provide additional information when debugging
is an issue. This recipe shows you how to add logging to an existing method.

212 Debugging Modules

Getting ready
We will add some logging statements to the following method, which saves the stock levels
of products to a file (you will also need to add the dependencies of the product and
stock modules to the manifest):

from os.path import join

from odoo import models, api, exceptions

EXPORTS_DIR = '/srv/exports'

class ProductProduct(models.Model):

 _inherit = 'product.product'

 @api.model

 def export_stock_level(self, stock_location):

 products = self.with_context(

 location=stock_location.id

).search([])

 products = products.filtered('qty_available')

 fname = join(EXPORTS_DIR, 'stock_level.txt')

 try:

 with open(fname, 'w') as fobj:

 for prod in products:

 fobj.write('%s\t%f\n' % (prod.name,

 prod.qty_
available))

 except IOError:

 raise exceptions.UserError('unable to save file')

How to do it...
In order to get some logs when this method is being executed, perform the
following steps:

1. At the beginning of the code, import the logging module:

import logging

2. Before the definition of the model class, get a logger for the module:

_logger = logging.getLogger(__name__)

Producing server logs to help debug methods 213

3. Modify the code of the export_stock_level() method, as follows:

 @api.model

 def export_stock_level(self, stock_location):

 _logger.info('export stock level for %s',
 stock_location.name)
 products = self.with_context(
 location=stock_location.id).search([])

 products = products.filtered('qty_available')

 _logger.debug('%d products in the location',
 len(products))

 fname = join(EXPORTS_DIR, 'stock_level.txt')

 try:

 with open(fname, 'w') as fobj:

 for prod in products:

 fobj.write('%s\t%f\n' % (
 prod.name, prod.qty_available))

 except IOError:

 _logger.exception(

 'Error while writing to %s in %s',

 'stock_level.txt', EXPORTS_DIR)

 raise exceptions.UserError('unable to save
file')

How it works...
Step 1 imports the logging module from the Python standard library. Odoo uses this
module to manage its logs.

Step 2 sets up a logger for the Python module. We use the common idiom __name__
in Odoo as an automatic variable for the name of the logger and to call the logger by
_logger.

Important note
The __name__ variable is set automatically by the Python interpreter at
module-import time, and its value is the full name of the module. Since Odoo
does a little trick with the imports, the add-on modules are seen by Python as
belonging to the odoo.addons Python package. So, if the code of the recipe
is in my_library/models/book.py, __name__ will be odoo.
addons.my_library.models.book.

214 Debugging Modules

By doing this, we get two benefits:

• The global logging configuration set on the odoo logger is applied to our logger
because of the hierarchical structure of loggers in the logging module.

• The logs will be prefixed with the full module path, which is a great help when
trying to find where a given log line is produced.

Step 3 uses the logger to produce log messages. The available methods for this are (by
increasing log level) debug, info, warning, error, and critical. All these methods
accept a message in which you can have % substitutions and additional arguments to
be inserted into the message. You should not do the % substitution yourself; the logging
module is smart enough to perform this operation if the log has to be produced. If you
are running with a log level of INFO, then DEBUG logs will avoid substitutions that will
consume CPU in the long run.

Another useful method shown in this recipe is _logger.exception(), which can be
used in an exception handler. The message will be logged with a level of ERROR, and the
stack trace is also printed in the application log.

There's more...
You can control the logging level of the application from the command line or from the
configuration file. There are two main ways of doing this:

The first way is to use the --log-handler option. Its basic syntax is like this:
--log-handler=prefix:level. In this case, the prefix is a piece of the path of the
logger name, and the level is DEBUG, INFO, WARNING, ERROR, or CRITICAL. If you omit
the prefix, you set the default level for all loggers. For instance, to set the logging level of
my_library loggers to DEBUG and keep the default log level for the other add-ons, you
can start Odoo as follows:

$ python odoo.py --log-handler=odoo.addons.my_library:DEBUG

Using the Odoo shell to interactively call methods 215

It is possible to specify --log-handler multiple times on the command line. You
can also configure the log handler in the configuration file of your Odoo instance. In
that case, you can use a comma-separated list of prefix:level pairs. For example,
the following line is the same configuration for a minimal logging output as before. We
maintain the most important messages and the error messages by default, except for
messages produced by werkzeug, for which we only want critical messages, and odoo.
service.server, for which we keep info-level messages, including server startup
notifications:

 log_handler = :ERROR,werkzeug:CRITICAL,odoo.service.
server:INFO

The second way is to use the --log-level option. To control the log level globally, you
can use --log-level as the command-line option. Possible values for this option are
critical, error, warn, debug, debug_rpc, debug_rpc_answer, debug_sql,
and test.

There are some shortcuts for setting logging levels. Here is a list of them:

• --log-request is a shortcut for --log-handler=odoo.http.rpc.
request:DEBUG.

• --log-response is a shortcut for --log-handler=odoo.http.rpc.
response:DEBUG.

• --log-web is a shortcut for --log-handler=odoo.http:DEBUG.

• --log-sql is a shortcut for --log-handler=odoo.sql_db:DEBUG.

Using the Odoo shell to interactively call
methods
The Odoo web interface is meant for end users, although the developer mode unlocks
a number of powerful features. However, testing and debugging through the web interface
is not the easiest way to do things, as you need to manually prepare the data, navigate in
the menus to perform actions, and so on. The Odoo shell is a command-line interface,
which you can use to issue calls. This recipe shows how to start the Odoo shell and
perform actions such as calling a method inside the shell.

216 Debugging Modules

Getting ready
We will reuse the same code as in the previous recipe to produce server logs to help
debug methods. This allows the product.product model to add a new method. We
will assume that you have an instance with the add-on installed and available. In this
recipe, we expect that you have an Odoo configuration file for this instance called
project.conf.

How to do it...
In order to call the export_stock_level() method from the Odoo shell, perform the
following steps:

1. Start the Odoo shell and specify your project configuration file:

 $./odoo-bin shell -c project.conf --log-level=error

2. Check for error messages and read the information text that's displayed before the
usual Python command-line prompt:

env: <odoo.api.Environment object at 0x10e3277f0>
odoo: <module 'odoo' from '/home/parth/community/odoo/__
init__.py'>
openerp: <module 'odoo' from '/home/parth/community/
odoo/__init__.py'>
self: res.users(1,)
Python 3.6.5 (default, Oct 30 2020, 14:23:58)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>>

3. Get a record set for product.product:

 >>> product = env['product.product']

4. Get the main stock location record:

 >>> location_stock = env.ref('stock.stock_location_
stock')

5. Call the export_stock_level() method:

 >>> product.export_stock_level(location_stock)

Using the Odoo shell to interactively call methods 217

6. Commit the transaction before exiting:

 >>> env.cr.commit()

7. Exit the shell by pressing Ctrl + D.

How it works...
Step 1 uses odoo-bin shell to start the Odoo shell. All the usual command-
line arguments are available. We use -c to specify a project configuration file and
--log-level to reduce the verbosity of the logs. When debugging, you may want to
have a logging level of DEBUG for some specific add-ons.

Before providing you with a Python command-line prompt, odoo-bin shell starts an
Odoo instance that does not listen on the network and initializes some global variables,
which are mentioned in the output:

• env is an environment that's connected to the database and specified on the
command line or in the configuration file.

• odoo is the odoo package that's imported for you. You get access to all the Python
modules within that package to do what you want.

• openerp is an alias for the odoo package for backward compatibility.

• self is a record set of res.users that contains a single record for the Odoo
superuser (administrator), which is linked to the env environment.

Steps 3 and 4 use env to get an empty record set and find a record according to the XML
ID. Step 5 calls the method on the product.product record set. These operations are
identical to what you would use inside a method, with a minor difference being that we
use env and not self.env (although we can have both, as they are identical). Take
a look at Chapter 5, Basic Server-Side Development, for more information on what is
available.

Step 6 commits the database transaction. This is not strictly necessary here because we did
not modify any record in the database, but if we had done so and wanted these changes
to persist, this is necessary; when you use Odoo through the web interface, each RPC call
runs in its own database transaction, and Odoo manages these for you. When running
in shell mode, this no longer happens and you have to call env.cr.commit() or
env.cr.rollback() yourself. Otherwise, when you exit the shell, any transaction in
progress is automatically rolled back. When testing, this is fine, but if you use the shell, for
example, to script the configuration of an instance, don't forget to commit your work!

218 Debugging Modules

There's more...
In shell mode, by default, Odoo opens Python's REPL shell interface. You can use the
REPL of your choice using the --shell-interface option. The supported REPLs are
ipython, ptpython, bpython, and python:

$./odoo-bin shell -c project.conf --shell-interface=ptpython

Using the Python debugger to trace method
execution
Sometimes, application logs are not enough to figure out what is going wrong. Fortunately,
we also have the Python debugger. This recipe shows us how to insert a breakpoint in a
method and trace the execution by hand.

Getting ready
We will reuse the export_stock_level() method that was shown in the Using the
Odoo shell to interactively call methods recipe of this chapter. Ensure that you have a copy
to hand.

How to do it...
To trace the execution of export_stock_level() with pdb, perform the
following steps:

1. Edit the code of the method, and insert the line highlighted here:

def export_stock_level(self, stock_location):
 import pdb; pdb.set_trace()
 products = self.with_context(location=stock_
location.id).search([])
 fname = join(EXPORTS_DIR, 'stock_level.txt')
 try:
 with open(fname, 'w') as fobj:
 for prod in products.filtered('qty_
available'):
 fobj.write('%s\t%f\n' % (prod.name, prod.
qty_available))
 except IOError:
 raise exceptions.UserError('unable to save
file')

Using the Python debugger to trace method execution 219

2. Run the method. We will use the Odoo shell, as explained in the Using the Odoo
shell to interactively call methods recipe:

 $./odoo-bin shell -c project.cfg --log-level=error

 [...]

 >>> product = env['product.product']

 >>> location_stock = env.ref('stock.stock_location_
stock')

 >>> product.export_stock_level(location_stock)

 > /home/cookbook/stock_level/models.py(18)export_
stock_level()

 -> products = self.with_context(

 (Pdb)

3. At the (Pdb) prompt, issue the args command (the shortcut of which is a) to get
the values of the arguments that were passed to the method:

(Pdb) a

self = product.product()

stock_location = stock.location(14,)

4. Enter the list command to check where in the code you are standing:

(Pdb) list

 13 @api.model
 14 def export_stock_level(self, stock_location):
 15 _logger.info('export stock level for %s',
 16 stock_location.name)
 17 import pdb; pdb.set_trace()
 18 -> products = self.with_context(
 19 location=stock_location.id).search([])
 20 products = products.filtered('qty_available')
 21 _logger.debug('%d products in the location',
 22 len(products))
 23 fname = join(EXPORTS_DIR, 'stock_level.txt')
(Pdb)

5. Enter the next command three times to walk through the first lines of the method.
You may also use n, which is a shortcut:

(Pdb) next
> /home/cookbook/stock_level/models.py(19)export_stock_
level()

220 Debugging Modules

-> location=stock_location.id).search([])
(Pdb) n
> /home/cookbook/stock_level/models.py(20)export_stock_
level()
-> products = products.filtered('qty_available')
(Pdb) n
> /home/cookbook/stock_level/models.py(21)export_stock_
level()
-> _logger.debug('%d products in the location',
(Pdb) n
> /home/cookbook/stock_level/models.py(22)export_stock_
level()
-> len(products))
(Pdb) n
> /home/cookbook/stock_level/models.py(23)export_stock_
level()
-> fname = join(EXPORTS_DIR, 'stock_level.txt')
(Pdb) n
> /home/cookbook/stock_level/models.py(24)export_stock_
level()
-> try:

6. Use the p command to display the values of the products and fname variables:

(Pdb) p products
product.product(32, 14, 17, 19, 21, 22, 23, 29, 34, 33,
26, 27, 42)

(Pdb) p fname

'/srv/exports/stock_level.txt'

7. Change the value of fname to point to the /tmp directory:

(Pdb) !fname = '/tmp/stock_level.txt'

8. Use the return (shortcut: r) command to execute the current function:

(Pdb) return

--Return--

> /home/cookbook/stock_level/models.py(26)export_stock_
level()->None

-> for product in products:

Using the Python debugger to trace method execution 221

9. Use the cont (shortcut: c) command to resume the execution of the program:

(Pdb) c

>>>

How it works...
In step 1, we hardcoded a breakpoint in the source code of the method by calling the
set_trace() method of the pdb module from the Python standard library. When this
method is executed, the normal flow of the program stops, and you get a (Pdb) prompt in
which you can enter pdb commands.

Step 2 calls the stock_level_export() method using shell mode. It is also possible to
restart the server normally and use the web interface to generate a call to the method you
need to trace by clicking on the appropriate elements of the user interface.

When you need to manually step through some code using the Python debugger, here are
a few tips that will make your life easier:

• Reduce the logging level to avoid having too many log lines, which pollutes the
output of the debugger. Starting at the ERROR level is generally fine. You may want
to enable some specific loggers with a higher verbosity, which you can do using the
--log-handler command-line option (refer to the Producing server logs to help
debug methods recipe).

• Run the server with --workers=0 to avoid any multiprocessing issues that can
cause the same breakpoint to be reached twice in two different processes.

• Run the server with --max-cron-threads=0 to disable the processing of the
ir.cron periodic tasks, which may otherwise trigger while you are stepping
through the method, which produces unwanted logs and side effects.

Steps 3 to 8 use several pdb commands to step through the execution of the method.
Here's a summary of the main commands of pdb. Most of these are also available using
the first letter as a shortcut. We indicate this here by having the optional letters between
parentheses:

• h(elp): This displays help about the pdb commands.

• a(rgs): This shows the value of the arguments of the current function/methods.

• l(ist): This displays the source code being executed in chunks of 11 lines,
initially centered on the current line. Successive calls will move further in the source
code file. Optionally, you can pass two integers at the start and end, which specify
the region to display.

222 Debugging Modules

• p: This prints a variable.

• pp: This pretty-prints a variable (useful with lists and dictionaries).

• w(here): This shows the call stack, with the current line at the bottom and the
Python interpreter at the top.

• u(p): This moves up one level in the call stack.

• d(own): This moves down one level in the call stack.

• n(ext): This executes the current line of code and then stops.

• s(tep): This is to step inside the execution of a method call.

• r(eturn): This resumes the execution of the current method until it returns.

• c(ont(inue)): This resumes the execution of the program until the next
breakpoint is hit.

• b(reak) <args>: This creates a new breakpoint and displays its identifier; args
can be one of the following:

• <empty>: This lists all breakpoints.

• line_number: This breaks at the specified line in the current file.

• filename:line_number: This breaks at the specified line of the specified file
(which is searched for in the directories of sys.path).

• function_name: This breaks at the first line of the specified function.

• tbreak <args>: This is similar to break, but the breakpoint will be canceled after
it has been reached, so successive execution of the line won't trigger it twice.

• disable bp_id: This disables a breakpoint by ID.

• enable bl_id: This enables a disabled breakpoint by ID.

• j(ump) lineno: The next line to execute will be the one specified. This can be
used to rerun or skip some lines.

• (!) statement: This executes a Python statement. The ! character can be
omitted if the command does not look like a pdb command. For instance, you need
it if you want to set the value of a variable named a, because a is the shortcut for the
args command.

Understanding the debug mode options 223

There's more...
In the recipe, we inserted a pdb.set_trace() statement to break into pdb for
debugging. We can also start pdb directly from within the Odoo shell, which is very
useful when you cannot easily modify the code of the project using pdb.runcall().
This function takes a method as the first argument and the arguments to pass to the
function as the next arguments. So, inside the Odoo shell, you do this:

>>> import pdb

>>> product = env['product.product']

>>> location_stock = env.ref('stock.stock_location_stock')

>>> pdb.runcall(product.export_stock_level, location_stock)

> /home/cookbook/stock_level/models.py(16)export_stock_level()

-> products = self.with_context(
(Pdb)

In this recipe, we focused on the Python debugger from the Python standard library,
pdb. It is very useful to know about this tool because it is guaranteed to be available
on any Python distribution. There are other Python debuggers available, such as ipdb
(https://pypi.python.org/pypi/ipdb) and pudb (https://pypi.
python.org/pypi/pudb), which can be used as drop-in replacements for pdb.
They share the same API, and most of the commands that you saw in this recipe were
unchanged. Also, of course, if you develop for Odoo using a Python IDE, you will have
access to a debugger that was integrated with it.

See also
If you want to learn more about the pdb debugger, refer to the full documentation of pdb
at https://docs.python.org/3.5/library/pdb.html.

Understanding the debug mode options
In Chapter 1, Installing the Odoo Development Environment, we saw how to enable debug/
developer options in Odoo. These options are very helpful in debugging and reveal some
further technical information. In this chapter, we will look at these options in detail.

https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/pudb
https://pypi.python.org/pypi/pudb
https://docs.python.org/3.5/library/pdb.html

224 Debugging Modules

How to do it...
Check the Activating the Odoo developer tools recipe of Chapter 1, Installing the Odoo
Development Environment, and activate developer mode. After activating developer mode,
you will see a drop-down menu with a bug icon in the top bar, as shown here:

Figure 7.1 – Available options after activating debug mode

In this menu, you will see various options. Give them a go to see them in action. The next
section will explain these options in more detail.

How it works...
Let's learn more about the options in the following points:

Run JS Tests: This option will redirect you to the JavaScript QUnit test case page, as
shown in the following screenshot. It will start running all test cases one by one. Here, you
can see the progress and the status of the test cases. In Chapter 18, Automated Test Cases,
we will see how can we create our own QUnit JavaScript test cases:

Understanding the debug mode options 225

Figure 7.2 – QUnit test case result screen

• Run JS Mobile Tests: Similar to the preceding option, but this one runs a QUnit test
case for a mobile environment.

• Run Click Anywhere Tests: This option will start clicking on all menus one by one.
It will click in all the views and search filters. If something is broken or there is any
regression, it will show the tracebacks. To stop this test, you will need to reload
the page.

• Open View: This option will open a list of all available views. By selecting any of
them, you can open that view without defining any menus or actions.

• Disable Tours: Odoo uses tours to improve the onboarding of new users. If you
want to disable it, you can do it by using this option.

226 Debugging Modules

• Start Tour: Odoo also uses tours for automated testing. We will create a custom
onboarding tour in Chapter 15, Web Client Development. This option will open
a dialog box with a list of all tours, as shown in the following screenshot. By clicking
on the play button next to a tour, Odoo will automatically perform all the steps of
the tour:

Figure 7.3 – Dialog to manually launch tours

• Edit Action: In the Adding menu items and views recipe of Chapter 3, Creating Odoo
Add-On Modules, we added a menu item and an action to open views in Odoo.
Details of these actions are also stored in the database as a record. This option will
open the record details of the action we open to display the current view.

• View Fields: This option will help you when you want to see the details of fields
from the user interface. It will show a list of fields for the current model. For
example, if you open a tree or form view for a library.book model, this option
will show a list of fields for the library.book model.

• Manage Filters: In Odoo, users can create custom filters from the search view. This
option will open a list of custom filters for the current model. Here, you can modify
the custom filters.

Understanding the debug mode options 227

• Technical Translations: This option will open a list of translated terms for the
current model. You can modify the technical translation terms for your model
from here. You can refer to Chapter 11, Internationalization, to learn more about
translations.

• View Access Rights: This option will show a list of security access rights for the
current model.

• View Record Rules: This option will show a list of security record rules for the
current model.

• Fields View Get: You can extend and modify an existing view from other add-on
modules. In some applications, these views are inherited by several add-on
modules. Because of this, it is very difficult to get a clear idea of the whole view
definition. With this option, you will get the final view definition after applying all
view inheritances. Internally, it uses the fields_view_get() method.

• Edit View: <view type>: This option will open the dialog with the ir.ui.view
record of the current view. This option is dynamic and it will show an option based
on the view that is currently open. This means that if you open Kanban View, you
will get an Edit View: Kanban option, and if you open Form View, you will get an
Edit View: Form option.

Important tip
You can modify the view definition from the Edit View option. This updated
definition will be applicable on the current database and these changes will be
removed when you update the module. It's therefore better to modify views
from modules.

• Edit ControlPanelView: This option is the same as the preceding one, but it will
open the ir.ui.view record of the current model's search view.

• Activate Assets Debugging: Odoo provides two types of developer mode: Developer
mode and Developer mode with assets. With this option, you can switch from
Developer mode to Developer mode with assets mode. Check the Activating the Odoo
developer tools recipe in Chapter 1, Installing the Odoo Development Environment,
for more details.

• Activate Test Assets Debugging: As we know, Odoo uses tours for testing. Enabling
this mode will load test assets in Odoo. This option will show some more tours in
the Start tour dialog.

228 Debugging Modules

• Regenerate Assets Bundles: Odoo manages all CSS and JavaScript through asset
bundles. This option deletes the old JavaScript and CSS assets and generates new
ones. This option is helpful when you are getting issues because of asset caching. We
will learn more about asset bundles in Chapter 14, CMS Website Development.

• Become Super User: This is a new option added from version 12. By activating this
option, you switch to a super user. You can access the records even if you don't have
access rights. This option is not available for all users; it is only available for users
who have Administration: settings access rights. After activating this mode, you
will see a striped top menu, as shown here:

Figure 7.4 – Menu after activating a super user

• Leave Developer Tools: This option allows you to leave developer mode.

We have seen all of the options that are available under the debug menu. These options
can be used in several ways, such as debugging, testing, and fixing issues. They can also be
used to explore the source code for views.

8
Advanced Server-

Side Development
Techniques

In Chapter 5, Basic Server-Side Development, you saw how to write methods for a model
class, how to extend methods from inherited models, and how to work with recordsets.
This chapter will deal with more advanced topics, such as working with the environment
of a recordset, calling a method upon a button click, and working with onchange
methods. The recipes in this chapter will help you manage more complex business
problems. You will learn how to create more interactive apps.

In this chapter, we will look at the following recipes:

• Changing the user that performs an action

• Calling a method with a modified context

• Executing raw SQL queries

• Writing a wizard to guide the user

• Defining onchange methods

• Calling onchange methods on the server side

230 Advanced Server-Side Development Techniques

• Defining onchange with the compute method

• Defining a model based on a SQL view

• Adding custom settings options

• Implementing init hooks

Technical requirements
The technical requirement for this chapter is the Odoo online platform.

All the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter08.

Changing the user that performs an action
When writing business logic code, you may have to perform some actions with a different
security context. A typical case is performing an action with superuser rights, bypassing
security checks. Such a requirement arises when business requirements necessitate
operating on records for which users do not have security access rights.

This recipe will show you how to allow normal users to modify the rent status of a book
by using sudo(). Put simply, we will allow users to rent books by themselves even if they
do not have the right to create a rent record.

Getting ready
For easier understanding, we will add a new model to manage the book rantings. We will
add a new model called library.book.rent. You can refer to the following definition
to add this model:

class LibraryBookRent(models.Model):
 _name = 'library.book.rent'

 book_id = fields.Many2one('library.book', 'Book',
required=True)
 borrower_id = fields.Many2one('res.partner', 'Borrower',
required=True)
 state = fields.Selection([('ongoing', 'Ongoing'),
('returned', 'Returned')],
 'State', default='ongoing',
required=True)

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter08

Changing the user that performs an action 231

 rent_date = fields.Date(default=fields.Date.today)
 return_date = fields.Date()

You will need to add a form view, an action, and a menu item to see this new model from
the user interface. You will also need to add security rules for the librarian, so they can
issue the book for rent. Please refer to Chapter 3, Creating Odoo Add-On Modules, if you
don't know how to add these things.

Alternatively, you can use the ready-made initial module from our GitHub code
examples to save time. This module will be available in the Chapter08/r0_initial_
module folder. The GitHub code examples are available at https://github.com/
PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/
tree/master/Chapter08/00_initial_module/my_library.

How to do it...
If you have tested the module, you will find that only users who have librarian access
rights can mark a book as borrowed. Non-librarian users cannot borrow a book by
themselves; they need to ask a librarian user. Suppose that we want to add a new feature so
that non-librarian users can borrow books by themselves, for themselves. We will do this
without giving them the access rights for the library.book.rent model.

In order to let normal users borrow books, you need to perform the following steps:

1. Add the book_rent() method in the library.book model:

class LibraryBook(models.Model):
 _name = 'library.book'
 ...
 def book_rent(self):

2. In the method, ensure that we are acting on a single record:

self.ensure_one()

3. Raise a warning if a book is not available to borrow (make sure you have imported
UserError at the top):

if self.state != 'available':
 raise UserError(_('Book is not available for
renting'))

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter08/00_initial_module/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter08/00_initial_module/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter08/00_initial_module/my_library

232 Advanced Server-Side Development Techniques

4. Get the empty recordset of library.book.rent as a superuser:

rent_as_superuser = self.env['library.book.rent'].sudo()

5. Create a new book borrow record with the appropriate values:

rent_as_superuser.create({
 'book_id': self.id,
 'borrower_id': self.env.user.partner_id.id,
})

6. To trigger this method from the user interface, add the button to the book's
form view:

 <button name="book_rent"
 string="Rent this book"
 type="object"
 class="btn-primary"/>

Restart the server and update my_library to apply the given changes. After the update,
you will see a Rent this book button on the book form view. When you click on that,
a new rent record will be created. This will also work for non-librarian users. You can test
this by accessing Odoo as a demo user.

How it works...
In the first three steps, we have added new method called book_rent(). This method
will be called when the user clicks on the Rent this book button on the book form view.

In step 4, we used sudo(). This method returns a new recordset with a modified
environment in which the user has superuser rights. When recordset is called
with sudo(), the environment will modify the environment attribute to su,
which indicates the superuser state of the environment. You can access its status via
recordset.env.su. All method calls through this sudo recordset are made with
superuser privileges. To get a better idea of this, remove .sudo() from the method and
then click on the Rent this book button. It will raise Access Error and the user will no
longer have access to the model. Simply using sudo() will bypass all security rules.

If you need a specific user, you can pass a recordset containing either that user or the
database ID of the user as follows:

public_user = self.env.ref('base.public_user')
public_book = self.env['library.book'].with_user(public_user)
public_book.search([('name', 'ilike', 'cookbook')])

Calling a method with a modified context 233

This code snippet allows you to search for books that are visible, using the public user.

There's more...
Using sudo(), you can bypass the access rights and security record rules. Sometimes you
can access multiple records that are meant to be isolated, such as records from different
companies in multi-company environments. The sudo() recordset bypasses all the
security rules of Odoo.

If you are not careful, records searched in this environment may be linked to any company
present in the database, which means that you may be leaking information to a user;
worse, you may be silently corrupting the database by linking records that belong to
different companies.

Important tip
When using sudo(), always double-check to ensure that your calls to
search() do not rely on the standard record rules to filter the results.

See also
Check out these references for more information:

• If you want to learn more about environments, refer to the Obtaining an empty
recordset for a model recipe in Chapter 5, Basic Server-Side Development.

• For more information about access-control lists and record rules, check out
Chapter 10, Security Access.

Calling a method with a modified context
The context is part of the environment of a recordset. It is used to pass extra information
such as the time zone and the language of the user from the user interface. You can also
use the context to pass the parameters specified in the actions. A number of methods in
the standard Odoo add-ons use the context to adapt their business logic based on these
context values. It is sometimes necessary to modify the context on a recordset to get the
desired results from a method call or the desired value for a computed field.

This recipe will show how to change the behavior of a method based on values in the
environmental context.

234 Advanced Server-Side Development Techniques

Getting ready
For this recipe, we will use the my_library module from the previous recipe. On the
form view of the library.book.rent model, we will add a button to mark the book as
lost, in case a normal user loses a book. Note that we already have the same button in the
form view of the book, but here, we will have a slightly different behavior to understand
the use of contexts in Odoo.

How to do it...
In order to add a button, you need to perform the following steps:

1. Update the definition of the state field to have a lost state:

state = fields.Selection([
 ('ongoing', 'Ongoing'),
 ('returned', 'Returned'),
 ('lost', 'Lost')],
 'State', default='ongoing', required=True)

2. Add a Mark as lost button in the form view of library.book.rent:

<button name="book_lost"
 string="Lost the Book"
 states="ongoing"
 type="object"/>

3. Add the book_lost() method in the library.book.rent model:

 def book_lost(self):
 ...

4. In the method, make sure that we are acting on a single record, and then change the
state:

self.ensure_one()
self.sudo().state = 'lost'

5. Add the following code in the method to change the context of the environment
and call the method to change the book's state to lost:

book_with_different_context = self.book_id.with_
context(avoid_deactivate=True)
book_with_different_context.sudo().make_lost()

Calling a method with a modified context 235

6. Update the make_lost() method of the library.book model to have
a different behavior:

def make_lost(self):
 self.ensure_one()
 self.state = 'lost'
 if not self.env.context.get('avoid_deactivate'):
 self.active = False

How it works...
In step 1, we have added a new state for the book. This new state will indicate lost books.

In step 2, we have added a new button, Mark as lost. The user will use this button to
report lost books.

In step 3 and 4, we have added method that will be called when user clicks on the Mark as
lost button.

Step 5 calls self.book_id.with_context() with some keyword arguments. This
returns a new version of the book_id recordset with an updated context. We are adding
one key in the context here, avoid_deactivate=True, but you can add multiple keys
if you want. We have used sudo() here, so non-librarian users can report books as lost.

In step 6, we checked whether the context has a positive value for the avoid_
deactivate key. We avoid deactivating books, so the librarian can see them even if they
are lost.

Now, when librarians report lost books in the book form view, the book record status will
be changed to lost, and the book will be archived. But when non-librarian users report
lost books in their rent records, the book record status will be changed to lost; the book
will not be archived, so that librarians can take a look at them later.

This is just a simple example of a modified context, but you can use it anywhere in an
ORM, short for Object Relational Mapping, based on your requirements.

There's more...
It is also possible to pass a dictionary to with_context(). In this case, the dictionary is
used as the new context, which overwrites the current one. So, step 5 can also be written
as follows:

new_context = self.env.context.copy()

new_context.update({'avoid_deactivate': True})

236 Advanced Server-Side Development Techniques

book_with_different_context = self.book_id.with_context(new_
context)
book_with_different_context.make_lost()

See also
Refer to the following recipes to learn more about contexts in Odoo:

• The Obtaining an empty recordset for a model recipe in Chapter 5, Basic Server-Side
Development, explains what the environment is.

• The Passing parameters to forms and actions – context recipe in Chapter 9, Backend
Views, explains how to modify the context in action definitions.

• The Search for records recipe in Chapter 5, Basic Server-Side Development, explains
active records.

Executing raw SQL queries
Most of the time, you can perform the operations you want by using Odoo's ORM. For
example, you can use the search() method to fetch records. However, sometimes, you
need more; either you cannot express what you want using the domain syntax (for which
some operations are tricky, if not downright impossible) or your query requires several
calls to search(), which ends up being inefficient.

This recipe shows you how to use raw SQL queries to get the average number of days a
user keeps a particular book.

Getting ready
For this recipe, we will use the my_library module from the previous recipe. For
simplicity, we will just print the results in a log, but in real scenarios, you will need to use
the query result in your business logic. In Chapter 9, Backend Views, we will display the
result of this query in the user interface.

How to do it...
To get the information about the average number of days a user keeps a particular book,
you need to perform the following steps:

1. Add the average_book_occupation() method to library.book:

def average_book_occupation(self):
 ...

Executing raw SQL queries 237

2. Add this code to the method to push all pending updates:

self.flush()

3. In the method, write the following SQL query:

sql_query = """
 SELECT
 lb.name,
 avg((EXTRACT(epoch from age(return_date, rent_
date)) / 86400))::int
 FROM
 library_book_rent AS lbr
 JOIN
 library_book as lb ON lb.id = lbr.book_id
 WHERE lbr.state = 'returned'
 GROUP BY lb.name;"""

4. Execute the query:

self.env.cr.execute(sql_query)

5. Fetch the result and log it (make sure you have imported logger):

result = self.env.cr.fetchall()
logger.info("Average book occupation: %s", result)

6. Add a button in the form view of the library.book mode to trigger our method:

<button name="average_book_occupation" string="Log
Average Occ." type="object" />

Do not forget to import logger in this file. Then, restart and update the my_library
module.

How it works...
In step 1, we added the average_book_occupation() method, which will be called
when the user clicks on the Log Average Occ. button.

In step 2, we have used the flush() method. Starting from, Odoo v13 ORM uses cache
excessively. The ORM uses one global cache per transaction. So, it might be possible that
records in the database and records in the ORM cache have different data. Using the
flush() method before the executing query will make sure all the changes in the cache
are pushed to the database.

238 Advanced Server-Side Development Techniques

In step 3, we declare a SQL SELECT query. This will return the average number of days
a user holds a particular book. If you run this query in the PostgreSQL CLI, you will get
a result based on your book data. Here is the sample date based on my database:

+---------------------------------------+-------+
| name | avg |
|---------------------------------------+-------|
| Odoo 12 Development Cookbook | 33 |
| PostgreSQL 10 Administration Cookbook | 81 |
+---------------------------------------+-------+

Step 4 calls the execute() method on the database cursor stored in self.env.cr.
This sends the query to PostgreSQL and executes it.

Step 5 uses the fetchall() method of the cursor to retrieve a list of rows selected
by the query. This method returns a list of rows. In my case, this is [('Odoo 12
Development Cookbook', 33), ('PostgreSQL 10 Administration
Cookbook', 81)]. From the form of the query we execute, we know that each row will
have exactly two values, the first being name and the other being the average number of
days a user holds a particular book. Then, we simply log it.

In step 6, we have just an Add button to handle user actions.

Important Note
If you are executing an UPDATE query, you need to manually invalidate
the cache, because Odoo ORM's cache is unaware of the changes you made
with the UPDATE query. To invalidate the cache, you can use self.
invalidate_cache().

There's more...
The object in self.env.cr is a thin wrapper around a psycopg2 cursor. The following
methods are the ones that you will want to use most of the time:

• execute(query, params): This executes the SQL query with the parameters
marked as %s in the query substituted with the values in params, which is a tuple.

Warning
Never do the substitution yourself; always use formatting options such as %s,
because if you use a technique such as string concatenation, it can make the
code vulnerable to SQL injection.

Writing a wizard to guide the user 239

• fetchone(): This returns one row from the database, wrapped in a tuple (even if
there is only one column selected by the query).

• fetchall(): This returns all the rows from the database as a list of tuples.

• dictfetchall(): This returns all the rows from the database as a list of
dictionaries mapping column names to values.

Be very careful when dealing with raw SQL queries:

• You are bypassing all the security of the application. Ensure that you call
search([('id', 'in', tuple(ids)]) with any list of IDs you are
retrieving to filter out records to which the user has no access.

• Any modifications you are making are bypassing the constraints set by the add-on
modules, except the NOT NULL, UNIQUE, and FOREIGN KEY constraints, which
are enforced at the database level. This is also the case for any computed field
recomputation triggers, so you may end up corrupting the database.

• Avoid the INSERT/UPDATE query, because inserting or updating records via
queries will not run any business logic written by overriding the create()
and write() methods. It will not update stored compute fields and the ORM
constraints will be bypassed too.

See also
• For access-rights management, refer to Chapter 10, Security Access.

Writing a wizard to guide the user
In the Using abstract models for reusable model features recipe in Chapter 4, Application
Models, the models.TransientModel base class was introduced. This class shares a lot
with normal models, except that the records of transient models are periodically cleaned
up in the database, hence the name transient. These are used to create wizards or dialog
boxes, which are filled in the user interface by the users and are generally used to perform
actions on the persistent records of the database.

Getting ready
For this recipe, we will use the my_library module from the previous recipes. This
recipe will add a new wizard. With this wizard, librarians will be able to issue multiple
books at the same time.

240 Advanced Server-Side Development Techniques

How to do it...
Follow the given steps to add a new wizard for creating book rent records:

1. Add a new transient model to the module, with the following definition:

class LibraryRentWizard(models.TransientModel):
 _name = 'library.rent.wizard'

 borrower_id = fields.Many2one('res.partner',
 string='Borrower')
 book_ids = fields.Many2many('library.book',
 string='Books')

2. Add the callback method that performs the action on the transient model. Add
the following code to the LibraryRentWizard class:

 def add_book_rents(self):
 rentModel = self.env['library.book.rent']
 for wiz in self:
 for book in wiz.book_ids:
 rentModel.create({
 'borrower_id': wiz.borrower_id.id,
 'book_id': book.id
 })

3. Create a form view for the model. Add the following view definition to the
module views:

 <record id='library_rent_wizard_form' model='ir.
ui.view'>
 <field name='name'>library rent wizard form view</
field>
 <field name='model'>library.rent.wizard</field>
 <field name='arch' type='xml'>
 <form string="Borrow books">
 <sheet>
 <group>
 <field name='borrower_id'/>
 </group>
 <group>
 <field name='book_ids'/>
 </group>
 </sheet>
 <footer>
 <button string='Rent' type='object'

Writing a wizard to guide the user 241

 name='add_book_rents'
 class='btn-primary'/>
 <button string='Cancel' class='btn-
default' special='cancel'/>
 </footer>
 </form>
 </field>
</record>

4. Create an action and a menu entry to display the wizard. Add the following
declarations to the module menu file:

<act_window id="action_wizard_rent_books"
 name="Give on Rent"
 res_model="library.rent.wizard"
 view_mode="form" target="new" />
<menuitem id="menu_wizard_rent_books"
 parent="library_base_menu"
 action="action_wizard_rent_books"
 sequence="20" />

5. Add access rights for library.rent.wizard in the ir.model.access.
csv file:

acl_library_rent_wizard,library.library_rent_
wizard,model_library_rent_wizard,group_librarian,1,1,1,1

Update the my_library module to apply the changes.

How it works...
Step 1 defines a new model. It is no different from other models, apart from the base
class, which is TransientModel instead of Model. Both TransientModel and
Model share a common base class, called BaseModel, and if you check the source code
of Odoo, you will see that 99% of the work is in BaseModel, and that both Model and
TransientModel are almost empty.

242 Advanced Server-Side Development Techniques

The only things that change for the TransientModel records are as follows:

• Records are periodically removed from the database so that the tables for transient
models do not grow over time.

• You are not allowed to define one2many fields on a TransientModel instance
that refers to a normal model as this will add a column on the persistent model that
links to transient data. Use many2many relations in this case. You can, of course,
use one2many fields if the related model in one2many is also TransientModel.

We define two fields in the model: one to store the member borrowing the books and
one to store the list of books being borrowed. We can add other scalar fields, to record a
scheduled return date, for instance.

Step 2 adds the code to the wizard class that will be called when the button defined in step
3 is clicked on. This code reads the values from the wizard and creates library.book.
rent records for each book.

Step 3 defines a view for our wizard. Refer to the Document-style forms recipe in Chapter 9,
Backend Views, for details. The important point here is the button in the footer; the type
attribute is set to 'object', which means that when the user clicks on the button, the
method with the name specified by the name attribute of the button will be called.

Step 4 ensures that we have an entry point for our wizard in the menu of the application.
We use target='new' in the action so that the form view is displayed as a dialog box
over the current form. Refer to the Adding a menu item and window action recipe in
Chapter 9, Backend Views, for details.

Step 5 we have added access rights for the library.rent.wizard model. With this,
the librarian user will get full rights of the library.rent.wizard model.

Note
Prior to Odoo v14, TransientModel does not require any access
rules. Anyone can create a record, and they can only access records
created by themselves. With Odoo v14, access rights are compulsory for
TransientModel.

There's more...
Here are some tips to enhance your wizards.

Writing a wizard to guide the user 243

Using the context to compute default values
The wizard we are presenting requires the user to fill in the name of the member in the
form. There is a feature of the web client that we can use to save some typing. When an
action is executed, the context is updated with some values that can be used by wizards:

• active_model: This is the name of the model related to the action. This is
generally the model being displayed onscreen.

• active_id: This indicates that a single record is active and provides the ID of that
record.

• active_ids: If several records are selected, this will be a list with the IDs. This
happens when several items are selected in a tree view when the action is triggered.
In a form view, you get [active_id].

• active_domain: This is an additional domain on which the wizard will operate.

These values can be used to compute the default values of the model or even directly in the
method called by the button. To improve on the example in this recipe, if we had a button
displayed on the form view of a res.partner model to launch the wizard, the context
of the creation of the wizard would contain {'active_model': 'res.partner',
'active_id': <partner id>}. In that case, you could define the member_id field
to get a default value computed by the following method:

def _default_member(self):

 if self.context.get('active_model') == 'res.partner':

 return self.context.get('active_id', False)

Wizards and code reuse
In step 2, we could have removed the for loop in the wizard, and by assuming that
len(self) will be 1, we can add self.ensure_one() at the beginning of the
method, as follows:

def add_book_rents(self):
 self.ensure_one()
 rentModel = self.env['library.book.rent']
 for book in self.book_ids:
 rentModel.create({
 'borrower_id': self.borrower_id.id,
 'book_id': book.id
 })

244 Advanced Server-Side Development Techniques

Adding self.ensure_one() at the beginning of the method will ensure that the
number of records in self is one. An error will be raised if there is more than one record
in self.

We recommend using the version in the recipe. It will allow us to reuse the wizard
from other parts of the code by creating records for the wizard, putting them in
a single recordset (refer to the Combining recordsets recipe in Chapter 5, Basic Server-
Side Development, to see how to do this), and then calling add_book_rents() on the
recordset. Here, the code is trivial, and you do not really need to jump through all those
hoops to record that some books have been borrowed by different members. However,
in an Odoo instance, some operations are much more complex, and it is always nice to
have a wizard available that does the right thing. When using these wizards, ensure that
you check the source code for any possible use of the active_model/active_id/
active_ids keys from the context. If this is the case, you need to pass a custom context
(refer to the Calling a method with a modified context recipe).

Redirecting the user
The method in step 2 does not return anything. This will cause the wizard dialog to be
closed after the action is performed. Another possibility is to have the method return
a dictionary with the fields of ir.action. In this case, the web client will process
the action as if a menu entry had been clicked on by the user. The get_formview_
action() method defined in the BaseModel class can be used to achieve this. For
instance, if we wanted to display the form view of the member who has just borrowed the
books, we could have written the following:

 def add_book_rents(self):
 rentModel = self.env['library.book.rent']
 for wiz in self:
 for book in wiz.book_ids:
 rentModel.create({
 'borrower_id': wiz.borrower_id.id,
 'book_id': book.id
 })

 borrowers = self.mapped('borrower_id')
 action = borrowers.get_formview_action()
 if len(borrowers.ids) > 1:

 action['domain'] = [('id', 'in', tuple(borrowers.
ids))]
 action['view_mode'] = 'tree,form'
 return action

See also 245

This builds a list of borrowers who have borrowed books from this wizard (in practice,
there will only be one such member when the wizard is called from the user interface) and
creates a dynamic action, which displays the members with the specified IDs.

The redirecting the user technique can be used to create a wizard that has several steps
to be performed one after the other. Each step in the wizard can use the values of the
previous steps, by providing a Next button that calls a method defined on the wizard that
updates some fields on the wizard and returning an action that will redisplay the same
updated wizard and get ready for the next step.

See also
• Refer to the Document-style forms recipe in Chapter 9, Backend Views, for more

details on defining a view for a wizard.

• To understand more about views and calling server-side methods, refer to the
Adding a menu item and window action recipe in Chapter 9, Backend Views.

• For more details on creating records for the wizard and putting them in a single
recordset, refer to the Combining recordsets recipe in Chapter 5, Basic Server-Side
Development.

Defining onchange methods
When writing business logic, it is often the case that some fields are interrelated. We
looked at how to specify constraints between fields in the Adding constraint validations to
a model recipe in Chapter 4, Application Models. This recipe illustrates a slightly different
concept. Here, onchange methods are called when a field is modified in the user
interface to update the values of other fields of the record in the web client, usually in
a form view.

We will illustrate this by providing a wizard similar to the one defined in the Writing
a wizard to guide the user recipe, but that can be used to record book returns. When a
member is set in the wizard, the list of books is updated to the books that are currently
borrowed by the member. While we are demonstrating onchange methods on
TransientModel, these features are also available on normal models.

246 Advanced Server-Side Development Techniques

Getting ready
For this recipe, we will use the my_library module from the Writing a wizard to guide
the user recipe of this chapter. We will create a wizard to return a borrowed book.
We will add an onchange method, which will auto-fill books when a librarian selects
a member field.

You will also want to prepare your work by defining the following transient model for
the wizard:

class LibraryReturnWizard(models.TransientModel):
 _name = 'library.return.wizard'

 borrower_id = fields.Many2one('res.partner',
string='Member')
 book_ids = fields.Many2many('library.book', string='Books')

 def books_returns(self):
 loanModal = self.env['library.book.rent']
 for rec in self:
 loans = loanModal .search(
 [('state', '=', 'ongoing'),
 ('book_id', 'in', rec.book_ids.ids),
 ('borrower_id', '=', rec.borrower_id.id)]
)
 for loan in loans:
 loan.book_return()

Finally, you will need to define a view, an action, and a menu entry for the wizard. These
steps will be left as an exercise for you to carry out.

How to do it...
To automatically populate the list of books to return when the user is changed, you need
to add an onchange method in the LibraryReturnsWizard step, with the following
definition:

 @api.onchange('borrower_id')
 def onchange_member(self):
 rentModel = self.env['library.book.rent']
 books_on_rent = rentModel.search(
 [('state', '=', 'ongoing'),
 ('borrower_id', '=', self.borrower_id.id)]
)
 self.book_ids = books_on_rent.mapped('book_id')

Defining onchange methods 247

How it works...
An onchange method uses the @api.onchange decorator, which is passed the names
of the fields that change and will thus trigger the call to the method. In our case, we
say that whenever borrower_id is modified in the user interface, the method must
be called.

In the body of the method, we search the books currently borrowed by the member, and
we use an attribute assignment to update the book_ids attribute of the wizard.

There's more...
The basic use of onchange methods is to compute new values for fields when some other
fields are changed in the user interface, as we have seen in the recipe.

Inside the body of the method, you get access to the fields displayed in the current view
of the record, but not necessarily all the fields of the model. This is because onchange
methods can be called while the record is being created in the user interface before it is
stored in the database! Inside an onchange method, self is in a special state, denoted
by the fact that self.id is not an integer, but an instance of odoo.models.NewId.
Therefore, you must not make any changes to the database in an onchange method,
because the user may end up canceling the creation of the record, which will not roll back
any changes made by the onchange method during the process of editing.

Additionally, onchange methods can return a Python dictionary. This dictionary can
have the following keys:

• warning: The value must be another dictionary with the title and message
keys containing the title and the content of a dialog box, respectively, which will
be displayed when the onchange method is run. This is useful for drawing the
attention of the user to inconsistencies or to potential problems.

• domain: The value must be another dictionary that maps field names to domains.
This is useful when you want to change the domain of a one2many field, depending
on the value of another field.

For instance, suppose that we have a fixed value set for expected_return_date in our
library.book.rent model, and we want to display a warning when a member has
some books that are late. We also want to restrict the choice of books to the ones currently
borrowed by the user. We can rewrite the onchange method, as follows:

 @api.onchange('member_id')

 def onchange_member(self):

 rentModel = self.env['library.book.rent']

248 Advanced Server-Side Development Techniques

 books_on_rent = rentModel.search(
 [('state', '=', 'ongoing'),
 ('borrower_id', '=', self.borrower_id.id)]
)
 self.book_ids = books_on_rent.mapped('book_id')

 result = {

 'domain': {'book_ids': [

 ('id', 'in', self.book_ids.ids)]

 }

 }

 late_domain = [

 ('id', 'in', books_on_rent.ids),

 ('expected_return_date', '<', fields.Date.today())

]

 late_books = loans.search(late_domain)

 if late_books:

 message = ('Warn the member that the following '

 'books are late:\n')

 titles = late_books.mapped('book_id.name')

 result['warning'] = {

 'title': 'Late books',

 'message': message + '\n'.join(titles)

 }

 return result

This code will show a warning about the borrower's late books, but such warnings are like
notifications. They cannot be used for validation purposes because they do not stop the
business flow.

Calling onchange methods on the server side
The onchange method has a limitation: it will not be invoked when you are performing
operations on the server side. onchange is invoked automatically only when the dependent
operations are performed through the Odoo user interface. Yet, in a number of cases, it is
important that these onchange methods are called, because they update important fields in
the created or updated record. Of course, you can do the required computation yourself,
but this is not always possible, as the onchange method can be added or modified by
a third-party add-on module installed on the instance that you don't know about.

Calling onchange methods on the server side 249

This recipe explains how to call the onchange methods on a record by manually invoking
the onchange method before creating a record.

Getting ready
In the Changing the user that performs an action recipe, we added a Rent this book button
so non-librarian users can borrow books by themselves. We now want to do the same for
returning the books, but instead of writing the logic for returning the book, we will just
use the book return wizard that we created in the Defining onchange methods recipe.

How to do it...
In this recipe, we will manually create a record of the library.return.wizard
model. We want the onchange method to compute the returned books for us. To do this,
you need to perform the following steps:

1. Import Form from the tests utility in the library_book.py file:

from odoo.tests.common import Form

2. Create the return_this_books method in the library.book model:

 def return_all_books(self):

 self.ensure_one()

3. Get an empty recordset for library.return.wizard:

 wizard = self.env['library.return.wizard']

4. Create wizard Form block like this:

 with Form(wizard) as return_form:

5. Trigger onchange by assigning a borrower and then return the books:

 return_form.borrower_id = self.env.user.partner_
id

 record = return_form.save()

 record.books_returns()

250 Advanced Server-Side Development Techniques

How it works...
For an explanation of step 1 to step 3, refer to the Creating new records recipe in Chapter 5,
Basic Server-Side Development.

Step 4 creates a virtual form to handle onchange specifications, such as the GUI.

Step 5 contains the full logic to return all books. In the first line, we have assigned
borrower_id in the wizard. This will trigger the onchange method defined in the
library.return.wizard model. The onchange method will assign the books in the
many2many field book_ids (to learn more about the onchange method, refer to the
onchange method definition in the previous recipe). Then, we call the save() method of
the form, which will return a wizard record. After that, we call the books_returns()
method to execute the logic to return all books.

The onchange method is mostly invoked from the user interface. But in this recipe, we
have learned how you can use/trigger the business logic of the onchange method on the
server side. This way, you can create records without bypassing any business logic.

See also
If you want to learn more about creating and updating records, refer to the Creating new
records and Updating the values of recordset records recipes in Chapter 5, Basic Server-Side
Development.

Defining onchange with the compute method
In the last two recipes, we have seen how to define and call the onchange method. We
have also seen its limitation, which is that it can be invoked automatically only from the
user interface. As a solution to this problem, Odoo v13 introduced a new way to define
onchange behavior. In this recipe, we will see how you can use the compute method to
produce behavior like the onchange method's.

Getting ready
For this recipe, we will use the my_library module from the previous recipe. We
will replace the onchange method of library.return.wizard with the compute
method.

Defining onchange with the compute method 251

How to do it...
Follow these steps to modify the onchange method with the compute method:

1. Replace api.onchange in the onchange_member() method with compute
like this:

 @api.depends('borrower_id')
 def onchange_member(self):
 ...

2. Add the compute parameter in the definition of the field like this:

 book_ids = fields.Many2many('library.book',
 string='Books',
 compute="onchange_member",
 readonly=False)

Upgrade the my_library module to apply the code, then test the return book wizard to
see the change.

How it works...
Functionally, our computed onchange works like the normal onchange method. The
only difference is now onchange will be trigged upon backend changes too.

In step 1, we replaced @api.onchange with @api.compute. This is required to
recompute the method when the field value changes.

In step 2, we registered the compute method with the field. If you notice, we have used
readonly=False with the compute field definition. By default, compute methods are
read-only, but by setting readonly=False, we are making sure that the field is editable
and stored.

Refer to the Adding computed fields to a model recipe in Chapter 4, Application Models, to
learn more about computed fields.

There's more...
As computed onchange works in the backend too, we no longer need to use the Form
class in the return_all_books() method. You can replace the code as follows:

def return_all_books(self):
 self.ensure_one()
 wizard = self.env['library.return.wizard']

252 Advanced Server-Side Development Techniques

 wizard.create({
 'borrower_id': self.env.user.partner_id.id
 }).books_returns()

This code will return all the rented books of a user without using the Form class. With
the normal onchange method, you need to create the Form object, but with computed
onchange, you no longer need to create a Form object. The correct onchange method will
be called when a record is created.

See also
• To learn more about computed fields, refer to the Adding computed fields to a model

recipe in Chapter 4, Application Models.

Defining a model based on a SQL view
When working on the design of an add-on module, we model the data in classes that
are then mapped to database tables by Odoo's ORM. We apply some well-known design
principles, such as separation of concerns and data normalization. However, at later
stages of the module design, it can be useful to aggregate data from several models in
a single table, and to maybe perform some operations on them on the way, especially for
reporting or producing dashboards. To make this easier, and to make use of the full power
of the underlying PostgreSQL database engine in Odoo, it is possible to define a read-only
model backed by a PostgreSQL view, rather than a table.

In this recipe, we will reuse the rent model from the Writing a wizard to guide the user
recipe in this chapter, and we will create a new model to make it easier to gather statistics
about books and authors.

Getting ready
For this recipe, we will use the my_library module from the previous recipe. We
will create a new model called library.book.rent.statistics to hold the
statistics data.

Defining a model based on a SQL view 253

How to do it...
To create a new model backed by a PostgreSQL view, follow these instructions:

1. Create a new model with the _auto class attribute set to False:

class LibraryBookRentStatistics(models.Model):
 _name = 'library.book.rent.statistics'
 _auto = False

2. Declare the fields you want to see in the model, setting them as readonly:

 book_id = fields.Many2one('library.book',
 string='Book',
 readonly=True)
 rent_count = fields.Integer(
 string="Times borrowed",
 readonly=True)
 average_occupation = fields.Integer(
 string="Average Occupation (DAYS)",
 readonly=True)

3. Define the init() method to create the view:

 def init(self):
 tools.drop_view_if_exists(self.env.cr, self._
table)
 query = """
 CREATE OR REPLACE VIEW library_book_rent_
statistics AS (
 SELECT
 min(lbr.id) as id,
 lbr.book_id as book_id,
 count(lbr.id) as rent_count,
 avg((EXTRACT(epoch from age(return_date,
rent_date)) / 86400))::int as average_occupation

 FROM
 library_book_rent AS lbr
 JOIN
 library_book as lb ON lb.id = lbr.book_id
 WHERE lbr.state = 'returned'
 GROUP BY lbr.book_id
);
 """
 self.env.cr.execute(query)

254 Advanced Server-Side Development Techniques

4. You can now define views for the new model. A pivot view is especially useful to
explore data (refer to Chapter 9, Backend Views).

5. Do not forget to define some access rules for the new model (take a look at Chapter
10, Security Access).

How it works...
Normally, Odoo will create a new table for the model you are defining by using the field
definitions for the columns. This is because in the BaseModel class, the _auto attribute
defaults to True. In step 1, by positioning this class attribute to False, we tell Odoo that
we will manage this by ourselves.

In step 2, we define some fields that will be used by Odoo to generate a table. We take care
to flag them as readonly=True, so that the views do not enable modifications that you
will not be able to save, since PostgreSQL views are read-only.

Step 3 defines the init() method. This method normally does nothing; it is called after
_auto_init() (which is responsible for the table creation when _auto = True, but
does nothing otherwise), and we use it to create a new SQL view (or to update the existing
view in the case of a module upgrade). The view creation query must create a view with
column names that match the field names of the model.

Important tip
It is a common mistake, in this case, to forget to rename the columns in the
view definition query, and this will cause an error message when Odoo cannot
find the column.

Note that we also need to provide an integer column called ID that contains unique
values.

There's more...
It is also possible to have some computed and related fields on such models. The only
restriction is that the fields cannot be stored (and therefore, you cannot use them to group
records or to search). However, in the preceding example, we could have made the editor
of the book available by adding a column, defined as follows:

publisher_id = fields.Many2one('res.partner', related='book_
id.publisher_id', readonly=True)

See also 255

If you need to group by publisher, you need to store the field by adding it in the view
definition, rather than using a related field.

See also
• To learn more about UI views for user actions, refer to Chapter 9, Backend Views.

• For a better understanding of access control and record rules, take a look at
Chapter 10, Security Access.

Adding custom settings options
In Odoo, you can provide optional features through the Settings options. The user can
enable or disable this option at any time. We will illustrate how to create Settings options
in this recipe.

Getting ready
In previous recipes, we have added buttons so that non-librarian users can borrow and
return books. This is not the case for every library; however, we will create a settings
option to enable and disable this feature. We will do this by hiding these buttons. In this
recipe, we will use the same my_library module from the previous recipes.

How to do it...
In order to create custom settings options, follow these steps:

1. Add a new group in the my_library/security/groups.xml file:

 <record id="group_self_borrow" model="res.groups">
 <field name="name">Self borrow</field>
 <field name="users" eval="[(4, ref('base.user_
admin'))]"/>
 </record>

256 Advanced Server-Side Development Techniques

2. Add a new field by inheriting the res.config.settings model:

class ResConfigSettings(models.TransientModel):
 _inherit = 'res.config.settings'

 group_self_borrow = fields.Boolean(string="Self
borrow",
 implied_group='my_
library.group_self_borrow')

3. Add this field in the existing settings view with xpath (for more details, refer to
Chapter 9, Backend Views):

<record id="res_config_settings_view_form" model="ir.
ui.view">
 <field name="name">res.config.settings.view.form.
inherit.library</field>
 <field name="model">res.config.settings</field>
 <field name="priority" eval="5"/>
 <field name="inherit_id" ref="base.res_config_
settings_view_form"/>
 <field name="arch" type="xml">
 <xpath expr="//div[hasclass('settings')]"
position="inside">
 <div class="app_settings_block"
 data-string="Library" string="Library"
data-key="my_library"
 groups="my_library.group_librarian">
 <h2>Library</h2>
 <div class="row mt16 o_settings_
container">
 <div class="col-12 col-lg-6 o_
setting_box" id="library">
 <div class="o_setting_left_pane">
 <field name="group_self_
borrow"/>
 </div>
 <div class="o_setting_right_
pane">
 <label for="group_self_
borrow"/>
 <div class="text-muted">
 Allow users to borrow and
return books by themself
 </div>

Adding custom settings options 257

 </div>
 </div>
 </div>
 </div>
 </xpath>
 </field>
</record>

4. Add some actions and a menu for Settings:

<record id="library_config_settings_action" model="ir.
actions.act_window">
 <field name="name">Settings</field>
 <field name="type">ir.actions.act_window</field>
 <field name="res_model">res.config.settings</field>
 <field name="view_id" ref="res_config_settings_view_
form"/>
 <field name="view_mode">form</field>
 <field name="target">inline</field>
 <field name="context">{'module' : 'my_library'}</
field>
</record>

<menuitem name="Settings"
 id="library_book_setting_menu"
 parent="library_base_menu"
 action="library_config_settings_action"
 sequence="50"/>

5. Modify the buttons in the book's form view and add a my_library.group_
self_borrow group:

<button name="book_rent"
 string="Rent this book"
 type="object" class="btn-primary"
 groups="my_library.group_self_borrow"/>
<button
 name="return_all_books"
 string="Return all book"
 type="object" class="btn-primary"
 groups="my_library.group_self_borrow"/>

Restart the server and update the my_library module to apply the changes.

258 Advanced Server-Side Development Techniques

How it works...
In Odoo, all settings options are added in the res.config.settings model. res.
config.settings is a transient model. In step 1, we created a new security group. We
will use this group to create the hide and show buttons.

In step 2, we added a new Boolean field in the res.config.settings model by
inheriting it. We added an implied_group attribute with the value of my_library.
group_self_borrow. This group will be assigned to all odoo users when the admin
enables or disables options with the Boolean field.

Odoo settings use a form view to display settings options on a user interface. All of these
options are added in a single form view with the external ID, base.res_config_
settings_view_form. In step 3, we added our option in the user interface by
inheriting this setting form view. We used xpath to add our setting option.
In Chapter 9, Backend Views, we will see this in detail. In the form definition, you will
find that the attribute data-key value of this option will be your module name. This is only
needed when you are adding a whole new tab in Settings. Otherwise, you can just add
your option in the Settings tab of the existing module with xpath.

In step 4, we added an action and a menu to access the configuration options from the
user interface. You will need to pass the {'module' : 'my_library'} context from
the action to open the Settings tab of the my_library module by default when the
menu is clicked.

In step 5, we added my_library.group_self_borrow groups to the buttons.
Because of this group, the Borrow and Return buttons will be hidden or shown, based on
the settings options.

After this, you will see a separate Settings tab for the library, and, in the tab, you will see
a Boolean field to enable or disable the self-borrowing option. When you enable or
disable this option, in the background, Odoo will apply or remove implied_group
to or from all odoo users. Because we added the groups on buttons, the buttons will be
displayed if the user has groups and will be hidden if the user doesn't have groups. In
Chapter 10, Security Access, we will look at security groups in detail.

There's more...
There are a few other ways to manage the Settings options. One of them is to separate
features in the new module and install or uninstall them through options. To do this, you
will need to add a Boolean field with the name of the module prefixed with module_.
If, for example, we create a new module called my_library_extras, you will need to
add a Boolean field, as follows:

Implementing init hooks 259

module_my_library_extras = fields.Boolean(
 string='Library Extra Features')

When you enable or disable this option, odoo will install or uninstall the my_
libarary_extras module.

Another way to manage settings is to use system parameters. Such data is stored in
the ir.config_parameter model. Here's how you to create system-wide global
parameters:

 digest_emails = fields.Boolean(
 string="Digest Emails",
 config_parameter='digest.default_digest_emails')

The config_parameter attribute in the fields will make sure the user data is stored in
System Parameters, at Settings | Technical | Parameters | System Parameters menu. The
data will be stored with the digest.default_digest_emails key.

Settings options are used to make your application generic. These options give freedom to
users and allow them to enable or disable features on the fly. When you convert a feature
into options, you can serve more customers with one module and your customers can
enable the feature whenever they like.

Implementing init hooks
In Chapter 6, Managing Module Data, you saw how to add, update, and delete records
from XML or CSV files. Sometimes, however, the business case is complex, and it can't be
solved using data files. In such cases, you can use the init hook from the manifest file to
perform the operations you want.

Getting ready
We will use the same my_library module from the previous recipe. For simplicity, in
this recipe, we will just create some book records through post_init_hook.

260 Advanced Server-Side Development Techniques

How to do it...
In order to add post_init_hook, follow these steps:

1. Register the hook in the __manifest__.py file with the post_init_hook key:

...
'post_init_hook': 'add_book_hook',
...

2. Add the add_book_hook() method in the __init__.py file:

from odoo import api, fields, SUPERUSER_ID

def add_book_hook(cr, registry):
 env = api.Environment(cr, SUPERUSER_ID, {})
 book_data1 = {'name': 'Book 1', 'date_release':
fields.Date.today()}
 book_data2 = {'name': 'Book 2', 'date_release':
fields.Date.today()}
 env['library.book'].create([book_data1, book_data2])

How it works...
In the first step, we registered post_init_hook in the manifest file with the add_
book_hook value. This means that after the installation of the module, Odoo will look
for the add_book_hook method in __init__.py. If it's found, it will call the method
with the database cursor and registry.

In step 2, we declared the add_book_hook() method, which will be called after the
module is installed. We created two records from this method. In real situations, you can
write complex business logic here.

In the example, we looked at post_init_hook, but Odoo supports two more hooks:

• pre_init_hook: This hook will be invoked when you start installing a module.
It is the opposite of post_init_hook; it will be invoked before installing the
current module.

• uninstall_hook: This hook will be invoked when you uninstall the module. This
is mostly used when your module needs a garbage-collection mechanism.

9
Backend Views

In all previous chapters, you have seen the server and database side of Odoo. In this
chapter, you will see the UI side of Odoo. You will learn how to create different types of
views. Aside from the views, this chapter also covers other components, such as action
buttons, menu, and widgets, which will help you make your application more user-
friendly. After completing this chapter, you will be able to design the UI of an Odoo
backend. Note that this chapter does not cover the website part of Odoo; we have
a separate chapter for that.

In this chapter, we will cover the following recipes:

• Adding a menu item and window actions

• Having an action open a specific view

• Adding content and widgets to a form view

• Adding buttons to forms

• Passing parameters to forms and actions – context

• Defining filters on record lists – domain

• Defining list views

• Defining search views

• Adding a search filter side panel

• Changing existing views – view inheritance

262 Backend Views

• Defining document-style forms

• Dynamic form elements using attrs

• Defining embedded views

• Displaying attachments on the side of the form view

• Defining kanban views

• Showing kanban cards in columns according to their state

• Defining calendar views

• Defining graph view and pivot view

• Defining the cohort view

• Defining the dashboard view

• Defining the gantt view

• Defining the activity view

• Defining the map view

• Show Banner on tree view

Technical requirements
Throughout this chapter, we will assume that you have a database with the base add-on
installed and an empty Odoo add-on module where you can add XML code from the
recipes to a data file referenced in the add-on's manifest. Refer to Chapter 3, Creating
Odoo Add-On Modules, for more information on how to activate changes in your add-on.

The technical requirements for this chapter include an online Odoo platform.

All of the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter09.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter09

Adding a menu item and window actions 263

Adding a menu item and window actions
The most obvious way to make a new feature available to users is by adding a menu item.
When you click on a menu item, something happens. This recipe walks you through how
to define that something.

We will create a top-level menu and its sub-menu, which will open a list of all customers.

This can also be done using the web user interface, through the settings menu, but we
prefer to use XML data files since this is what we'll have to use when creating our add-on
modules.

Getting ready
In this recipe, we will need a module with a dependency on the account module, as the
account module adds new fields to the res.partner model to differentiate between
customer and supplier records. So, if you are using an existing module, please add the
account dependency in the manifest. Alternatively, you can grab the initial module
from https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter09/00_initial_
module.

How to do it...
In an XML data file of our add-on module, perform the following steps:

1. Define an action to be executed:

 <act_window
 id="action_all_customers"
 name="All customers"
 res_model="res.partner"
 view_mode="tree,form"
 domain="[('customer_rank', '>', 0)]"
 context="{'default_customer_rank': 1}"
 limit="20"/>

2. Create the top-level menu, which will be as follows:

 <menuitem id="menu_custom_top_level"
 name="My App menu"
 web_icon="my_module,static/description/icon.
png"/>

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter09/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter09/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter09/00_initial_module

264 Backend Views

3. Refer to our action in the menu:

<menuitem id="menu_all_customers"
 parent="menu_custom_top_level"
 action="action_all_customers"
 sequence="10"/>

If we now upgrade the module, we will see a top-level menu with the label My App menu
that opens a sub-menu called All Customers. Clicking on that menu item will open a list
of all customers.

How it works...
The first XML element, act_window, declares a window action to display a list view with
all the customers. We used the most important attributes:

• name: To be used as the title for views opened by the action.

• res_model: This is the model to be used. We are using res.partner, where
Odoo stores all the partners and addresses, including customers.

• view_mode: This lists the view types to make available. It is a comma-separated
values file of the views type. The default value is tree, form, which makes list
and form views available. If you just want to show calendar and form views, then
the value of view_mode should be calendar, form. Other possible view
choices are kanban, graph, pivot, calendar, cohort, and dashboard. You
will learn more about these views in forthcoming recipes.

• domain: This is optional and allows you to set a filter on the records to be made
available in the views. In this case, we want to limit the partners to only those who
are customers. We will see all of these views in more detail in the Defining filters on
record lists – Domain recipe of this chapter.

• context: This can set values made available to the opened views, affecting their
behavior. In our example, on new records, we want the customer rank's default
value to be 1. This will be covered in more depth in the Passing parameters to forms
and actions – Context recipe of this chapter.

• limit: This sets the default amount of records that can be seen on list views. In our
example, we have given a limit of 20, but if you don't give a limit value, Odoo will
use the default value of 80.

Adding a menu item and window actions 265

Next, we create the menu item hierarchy from the top-level menu to the clickable end
menu item. The most important attributes for the menuitem element are as follows:

• name: This is used as the text that the menu items display. If your menu item links
to an action, you can leave this out, because the action's name will be used in
that case.

• parent (parent_id if using the record element): This is the XML ID that
references the parent menu item. Items with no parents are top-level menus.

• action: This is the XML ID that references the action to be called.

• sequence: This is used to order the sibling menu items.

• groups (groups_id with the record tag): This is an optional list of user groups
that can access the menu item. If empty, it will be available to all users.

• web_icon: This option only works on the top-level menu. It will display an icon of
your application in the Enterprise edition.

Window actions automatically determine the view to be used by looking up views for
the target model with the intended type (form, tree, and so on) and picking the one
with the lowest sequence number. act_window and menuitem are convenient shortcut
XML tags that hide what you're actually doing. If you don't want to use the shortcut XML
tags, then you can create a record of the ir.actions.act_window and ir.ui.
menu models via the <record> tag. For example, if you want to load act_window with
<record>, you can do so as follows:

<record id='action_all_customers' model='ir.actions.act_
window'>
 <field name="name">All customers</field>
 <field name="res_model">res.partner</field>
 <field name="view_mode">tree,form</field>
 <field name="domain">[('customer_rank','>', 0)]</field>
 <field name="context">{'default_customer_rank': 1}</field>
 <field name="limit">20</field>
</record>

In the same way, you can create a menuitem instance through <record>.

Important information
Be aware that names used with the menuitem shortcut may not map to the
field names that are used when using a record element – parent should be
parent_id and groups should be groups_id.

266 Backend Views

To build the menu, the web client reads all the records from ir.ui.menu and infers
their hierarchy from the parent_id field. Menus are also filtered based on user
permissions to models and groups assigned to menus and actions. When a user clicks on
a menu item, its action is executed.

There's more...
Window actions also support a target attribute to specify how the view is to be
presented. The possible choices are as follows:

• current: This is the default and opens the view in the web client main content area.

• new: This opens the view in a popup.

• inline: Like current but opens a form in edit mode and disables the Action menu.

• fullscreen: The action will cover the whole browser window, so this will overlay the
menus too. Sometimes, this is called tablet mode.

• main: Like current, but also clears out the breadcrumbs.

There are also some additional attributes available for window actions that are not
supported by the act_window shortcut tag. To use them, we must use the record
element with the following fields:

• res_id: If opening a form, you can have it open a specific record by setting its ID
here. This can be useful for multi-step wizards, or in cases when you have to view or
edit a specific record frequently.

• search_view_id: This specifies a specific search view to use for tree and
graph views.

Keep in mind that the menu in the top left (or the apps icon in the Enterprise version)
and the menu in the bar at the top are both made up of menu items. The only difference is
that the items in the menu in the top left don't have any parent menus, while the ones on
the top bar have the respective menu item from the top bar as a parent. In the left bar, the
hierarchical structure is more obvious.

Also bear in mind that for design reasons, the first-level menus will open the dropdown
menu if your second-level menu has child menus. In any case, Odoo will open the first
menu item's action based on the sequence of child menu items.

Having an action open a specific view 267

Refer to the following to learn more about menus and views:

• The ir.actions.act_window action type is the most common action type,
but a menu can refer to any type of action. Technically, it is the same if you link to
a client action, a server action, or any other model defined in the ir.actions.*
namespace. It just differs in what the backend makes of the action.

• If you need just a tiny bit more flexibility in the concrete action to be called, look
into server actions that return a window action. If you need complete flexibility,
take a look at the client actions (ir.actions.client), which allow you to have
a completely custom user interface. However, only do this as a last resort as you lose
a lot of Odoo's convenient helpers when using them.

See also
• For detailed explanation filters on all of the views have a look at the Defining filters

on record lists – Domain recipe of this chapter.

Having an action open a specific view
Window actions automatically determine the view to be used if none is given, but
sometimes we want an action to open a specific view.

We will create a basic form view for the res.partner model, and then we will create
a new window action specifically open that form view.

How to do it...
1. Define the partner minimal tree and form view:

 <record id="view_all_customers_tree" model="ir.
ui.view">
 <field name="name">All customers</field>
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <tree>
 <field name="name" />
 </tree>
 </field>
 </record>

 <record id="view_all_customers_form" model="ir.
ui.view">
 <field name="name">All customers</field>

268 Backend Views

 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <form>
 <group>
 <field name="name" />
 </group>
 </form>
 </field>
 </record>

2. Update the action from the Adding a menu item and window action recipe to use
a new form view:

 <record id="action_all_customers_tree" model="ir.
actions.act_window.view">
 <field name="act_window_id" ref="action_all_
customers" />
 <field name="view_id" ref="view_all_customers_
tree" />
 <field name="view_mode">tree</field>
 <field name="sequence" eval="2"/>
 </record>

 <record id="action_all_customers_form" model="ir.
actions.act_window.view">
 <field name="act_window_id" ref="action_all_
customers" />
 <field name="view_id" ref="view_all_customers_
form" />
 <field name="view_mode">form</field>
 <field name="sequence" eval="2"/>
 </record>

Now, if you open your menu and click on a partner in the list, you should see the very
minimal form and tree that we just defined.

Having an action open a specific view 269

How it works...
This time, we used the generic XML code for any type of record, that is, the record
element with the required id and model attributes. The id attribute on the record
element is an arbitrary string that must be unique for your add-on. The model attribute
refers to the name of the model you want to create. Given that we want to create a view,
we need to create a record of the ir.ui.view model. Within this element, you set fields
as defined in the model you chose through the model attribute. For ir.ui.view, the
crucial fields are model and arch. The model field contains the model you want to
define a view for, while the arch field contains the definition of the view itself. We'll come
to its contents in a short while.

The name field, while not strictly necessary, is helpful when debugging problems with
views. So, set it to a string that tells you what this view is intended to do. This field's
content is not shown to the user, so you can fill in any technical hints that you deem
sensible. If you set nothing here, you'll get a default name that contains the model name
and view type.

ir.actions.act_window.view
The second record we defined works in tandem with act_window, which we defined
earlier in the Adding a menu item and window action recipe. We already know that by
setting the view_id field there, we can select which view is used for the first view mode.
However, given that we set the view_mode field to the tree, form view, view_id
would have to pick a tree view, but we want to set the form view, which comes
second here.

If you find yourself in a situation like this, use the ir.actions.act_window.view
model, which gives you fine-grained control over which views to load for which view type.
The first two fields defined here are examples of the generic way to refer to other objects;
you keep the element's body empty but add an attribute called ref, which contains the
XML ID of the object you want to reference. So, what happens here is we refer to our
action from the previous recipe in the act_window_id field, and refer to the view we
just created in the view_id field. Then, though not strictly necessary, we add a sequence
number to position this view assignment relative to the other view assignments, for the
same action. This is only relevant if you assign views for different view modes by creating
multiple ir.actions.act_window.view records.

270 Backend Views

Important information
Once you define the ir.actions.act_window.view records, they
take precedence over what you filled in the action's view_mode field. So,
with the preceding records, you won't see a list at all, but only a form. You
should add another ir.actions.act_window.view record that
points to a list view for the res.partner model.

There's more...
As we saw in the Adding a menu item and window action recipe, we can replace act_
window with <record>. If you want to use a custom view, you can follow the given
syntax:

<record id='action_all_customers' model='ir.actions.act_
window'>
 <field name="name">All customers</field>
 <field name="res_model">res.partner</field>
 <field name="view_mode">tree,form</field>
 <field name="domain">[('customer_rank', '>', 0)]</field>
 <field name="context">{'default_customer_rank': 1,
 'tree_view_ref': 'my_module.view_all_customers_tree',
 'form_view_ref': 'my_module.view_all_customers_form'
 }</field>
 <field name="limit">20</field>
</record>

This example is just an alternative of act_window. In the code base of Odoo, you will
find both types of action.

Adding content and widgets to a form view
The preceding recipe showed how to pick a specific view for an action. Now, we'll
demonstrate how to make the form view more useful. In this recipe, we will use the form
view that we defined earlier in the Having an action open a specific view recipe. In the form
view, we will add the widgets and content.

Adding content and widgets to a form view 271

How to do it...
1. Define the basic structure of the form view:

<record id="form_all_customers" model="ir.ui.view">

 <field name="name">All customers</field>

 <field name="model">res.partner</field>

 <field name="arch" type="xml">

 <form>

 <!--form content goes here -->

 </form>

 </field>

</record>

2. To add a head bar, which is usually used for action buttons and stage pipeline, add
this inside the form:

<header>
<button type="object" name="open_commercial_entity"
 string="Open commercial partner"
class="btn-primary" />
</header>

3. Add fields to the form, using group tags to organize them visually:

<group string="Content" name="my_content">

 <field name="name" />

 <field name="category_id" widget="many2many_tags" />

</group>

Now, the form should display a top bar with a button and two vertically aligned fields as
shown in the following screenshot:

Figure 9.1 – Screenshot of the form view

272 Backend Views

How it works...
We'll look at the arch field of the ir.ui.view model first. First, note that views are
defined in XML, so you need to pass the type="xml" attribute for the arch field,
otherwise the parser will be confused. It is also mandatory that your view definition
contains well-formed XML, otherwise you'll get in trouble when loading this snippet.

We'll now walk through the tags that we used previously and summarize the others that
are available.

form
When you define a form view, it is mandatory that the first element within the arch field
is a form element. This is used internally to derive the record's type field.

In addition to the following elements, you can use arbitrary HTML within the form tag.
The algorithm has it that every element unknown to Odoo is considered plain HTML
and is simply passed through to the browser. Be careful with that, as the HTML you fill in
can interact with the HTML code the Odoo elements generates, which might distort the
rendering.

header
This element is a container for elements that should be shown in a form's header, which
is rendered as a white bar. Usually, as in this example, you place action buttons here.
Alternatively, if your model has a state field, you could opt for a status bar.

button
The button element is used to allow the user to trigger an action. Refer to the Adding
buttons to forms recipe for details.

group
The <group> element is Odoo's main element and is used for organizing content. Fields
placed within a <group> element are rendered with their title, and all fields within the
same group are aligned so that there's also a visual indicator that they belong together.
You can also nest <group> elements; this causes Odoo to render the contained fields in
adjacent columns.

In general, you should use the <group> mechanism to display all of your fields in the
form view and only revert to the other elements, such as <notebook>, <label>,
<newline>, and more, when necessary.

Adding content and widgets to a form view 273

If you assign the string attribute on a group, its content will be rendered as a heading
for the group.

You should develop the habit of assigning a name to every logical group of fields, too. This
name is not visible to the user but is very helpful when we override views in the following
recipes. Keep the name unique within the form definition to avoid confusion about which
group you refer to. Don't use the string attribute for this, because the value of the string
will change eventually because of translations.

field
In order to actually show and manipulate data, your form view should contain some
field elements. Here is an example:

<field name="category_id" widget="many2many_tags"
readonly="1"/>

These have one mandatory attribute, called name, which refers to the field's name
in the model. Earlier, we offered the user the ability to edit the partner's categories.
If we only want to disable the editing feature on a field, we can set the readonly
attribute to 1 or True. This attribute may actually contain a small subset of Python
code, so readonly="2>1" will make the field read-only too. This also applies to the
invisible attribute, for which you used to have a value that is read from the database
but not shown to the user. Later, we'll take a look at which situations this can be used in.

You must have noticed the widget attribute in the categories field. This defines
how the data in the field is supposed to be presented to the user. Every type of field has
a standard widget, so you don't have to explicitly choose a widget. However, several types
provide multiple ways of representation, in which case you might opt for something
other than the default. As a complete list of available widgets would exceed the scope of
this recipe, consult Odoo's source code to try them out. Take a look at Chapter 14, CMS
Website Development, for details on how to make your own.

notebook and page
If your model has too many fields, then you can use the <notebook> and <page> tags
to create tabs. Each <page> in the <notebook> tag will create a new tab, and content
inside the page will be the tab content. The following example will create two tabs with
three fields in each tab:

<notebook>
 <page string="Tab 1">
 <field name="field1"/>

274 Backend Views

 <field name="field2"/>
 <field name="field3"/>
 </page>
 <page string="Tab 2">
 <field name="field4"/>
 <field name="field5"/>
 <field name="field6"/>
 </page>
</notebook>

The string attribute in the <page> tag will be the name of the tab. You can only use
<page> tags in the <notebook> tag, but in the <page> tag, you can use any other
elements.

General attributes
On most elements (this includes group, field, and button), you can set the attrs
and groups attributes. Here is a small example:

<field name="category_id"
 attrs="{'readpnly': [('state', '='. 'done')]}"
 groups="base.group_no_one"/>

While attrs is discussed in the Dynamic form elements using attrs recipe, the groups
attribute gives you the possibility to show some elements only to members of certain
groups. Simply put, the group's full XML ID (separated by commas for multiple groups) is
the attribute, and the element will be hidden for everyone who is not a member of at least
one of the groups mentioned.

Other tags
There are situations in which you might want to deviate from the strict layout groups
prescribed. For example, if you want the name field of a record to be rendered as a
heading, the field's label will interfere with the appearance. In this case, don't put your
field into a group element, but instead into a plain HTML h1 element. Then, before the
h1 element, put a label element with the for attribute set to your field name:

<label for="name" />

<h1><field name="name" /></h1>

This will be rendered with the field's content as a big heading, but the field's name will
be written in a smaller type, above the big heading. This is basically what the standard
partner form does.

Adding content and widgets to a form view 275

If you need a line break within a group, use the newline element. It's always empty:

<newline />

Another useful element is footer. When you open a form as a popup, this is a good
place to put the action buttons. It will be rendered as a separate bar too, analogous to the
header element.

The form view also has special widgets such as web_ribbon. You can use it with the
<widget> tag as follows:

<widget name="web_ribbon" title="Archived" bg_color="bg-danger"
attrs="{'invisible': [('active', '=', True)]}"/>

You can use attrs to hide and show the ribbon based on a condition. Don't worry if you
are not aware of attrs. It will be covered in the Dynamic form elements using attrs recipe
of this chapter.

Important tip
Don't address XML nodes with their string attribute (or any other
translated attribute, for that matter), as your view overrides will break for other
languages because views are translated before inheritance is applied.

There's more...
Since form views are basically HTML with some extensions, Odoo also makes extensive
use of CSS classes. Two very useful ones are oe_read_only and oe_edit_only.
Elements with these classes will be visible only in read-only mode or edit mode
respectively. For example, to have the label visible only in edit mode, use the following:

<label for="name" class="oe_edit_only" />

Another very useful class is oe_inline, which you can use on fields to make them
render as an inline element, to avoid causing unwanted line breaks. Use this class when
you embed a field into text or other markup tags.

Furthermore, the form element can have the create, edit, and delete attributes. If
you set one of these to false, the corresponding action won't be available for this form.
Without this being explicitly set, the availability of the action is inferred from the user's
permissions. Note that this is purely for straightening up the UI; don't use this for security.

276 Backend Views

See also
The widgets and views already offer a lot of functionality, but sooner or later, you will
have requirements that cannot be fulfilled with the exiting widgets and views. Refer to the
following recipes to create your own views and widgets:

• Refer to the Adding buttons to forms recipe in this chapter for more details about
using the button element to trigger an action.

• To define your own widgets, refer to the Creating custom widgets recipe of Chapter
15, Web Client Development.

• Refer to the Creating a new view recipe of Chapter 15, Web Client Development, to
create your own view.

Adding buttons to forms
Buttons are used on form view to handle user actions. We added a button in the form
view in the previous recipe, but there are quite a few different types of buttons that we can
use. This recipe will add another button that will help the user to open another view. It will
also put the following code in the recipe's header element.

How to do it...
Add a button that refers to an action:

<button type="action"
 name="%(base.action_partner_category_form)d"
 string="Open partner categories" />

How it works...
The button's type attribute determines the semantics of the other fields, so we'll first take
a look at the possible values:

• action: This makes the button call an action as defined in the ir.actions.*
namespace. The name attribute needs to contain the action's database ID, which you
can conveniently have Odoo look up with a Python-format string that contains the
XML ID of the action in question.

• object: This calls a method of the current model. The name attribute contains the
function's name.

• string: The string attribute is used to assign the text the user sees.

Passing parameters to forms and actions – context 277

There's more...
Use the btn-primary CSS classes to render a button that is highlighted and
btn-default to render a normal button. This is commonly used for cancel buttons in
wizards or to offer secondary actions in a visually unobtrusive way. Setting the oe_link
class causes the button to look like a link. You can also use other bootstrap button classes
to get different button colors.

A call with a button of the object type can return a dictionary that describes an action,
which will then be executed on the client side. This way, you can implement multiscreen
wizards or just open another record.

Note
Note that clicking on a button always causes the client to issue a write or
create call before running the method.

You can also have content within the button tag by replacing the string attribute. This
is commonly used in button boxes, as described in the Document style forms recipe.

Passing parameters to forms and actions –
context
Internally, every method in Odoo has access to a dictionary, called context, that is
propagated from every action to the methods involved in delivering that action. The
UI also has access to it, and it can be modified in various ways by setting values in the
context. In this recipe, we'll explore some of the applications of this mechanism by toying
with the language, default values, and implicit filters.

Getting ready
While not strictly necessary, this recipe will be more fun if you install the French
language, if you haven't got this already. Consult Chapter 11, Internationalization, for how
to do it. If you have a French database, change fr_FR to some other language; en_US
will do for English. Also, click on the Active button (changing to Archive when you hover
over it) for one of your customers in order to archive it and verify that this partner doesn't
show up anymore in the list.

278 Backend Views

How to do it...
1. Create a new action, very similar to the one from the Adding a menu item and

window action recipe:

<act_window id="action_all_customers_fr"
 name="Tous les clients"
 res_model="res.partner"
 domain="[('customer_rank', '<', 1)]"
 context="{'lang': 'fr_FR', 'default_lang': 'fr_FR',
 'active_test': False, 'default_customer_rank':
1}" />

2. Add a menu that calls this action. This is left as an exercise for the reader.

When you open this menu, the views will show up in French, and if you create a new
partner, they will have French as their pre-selected language. A less obvious difference is
that you will also see the deactivated (archived) partner records.

How it works...
The context dictionary is populated from several sources. First, some values from the
current user's record (lang and tz, for the user's language and the user's time zone) are
read. Then, we have some add-ons that add keys for their own purposes. Furthermore,
the UI adds keys about which model and which record we're busy with at the moment
(active_id, active_ids, active_model). Also, as seen in the Having an action
open a specific view recipe, we can add our own keys in actions. These are merged together
and passed to the underlying server functions, and also to the client-side UI.

So, by setting the lang context key, we force the display language to be French. You will
note that this doesn't change the whole UI language, which is because only the list view
that we open lies within the scope of this context. The rest of the UI was loaded already
with another context that contained the user's original language. However, if you open
a record in this list view, it will be presented in French too, and if you open a linked record
on the form or press a button that executes an action, the language will be propagated too.

Passing parameters to forms and actions – context 279

By setting default_lang, we set a default value for every record created within the
scope of this context. The general pattern is default_$fieldname: my_default_
value, which enables you to set default values for newly created partners, in this case.
Given that our menu is about customers, we have added default_customer_rank:
1 as the value for the Customer rank field by default. However, this is a model-wide
default for res.partner, so this wouldn't have changed anything. For scalar fields,
the syntax for this is as you would write it in Python code: string fields go in quotes,
number fields stay as they are, and Boolean fields are either True or False. For
relational fields, the syntax is slightly more complicated; refer to Chapter 6, Managing
Module Data, to learn how to write them.

Note
Note that the default values set in the context override the default values set
in the model definition, so you can have different default values in different
situations.

The last key is active_test, which has very special semantics. For every model that has
a field called active, Odoo automatically filters out records where this field is False.
This is why the partner where you unchecked this field disappeared from the list. By
setting this key, we can suppress this behavior.

Important information
This is useful for the UI in its own right but even more useful in your Python
code when you need to ensure that an operation is applied to all the records,
not just the active ones.

There's more...
When defining a context, you have access to some variables, the most important one being
uid, which evaluates to the current user's ID. You'll need this to set default filters (refer
to the next recipe, Defining filters on record lists – domain). Furthermore, you have access
to the context_today function and the current_date variable, where the first is
a date object that represents the current date, as seen from the user's time zone, and
the latter is the current date as seen in UTC, formatted as YYYY-MM-DD. To set a default
value for a date field to the current date, use current_date, and, for default filters, use
context_today().

Furthermore, you can do some date calculations with a subset of Python's datetime,
time, and relativedelta classes.

280 Backend Views

Important tips
Most of the domains are evaluated on the client side. The server-side domain
evaluation is restricted for security reasons. When client-side evaluation was
introduced, the best option in order to not break the whole system was to
implement a part of Python in JavaScript. There is a small JavaScript Python
interpreter built into Odoo that works well for simple expressions, and that is
usually enough.

Beware of the use of the context variable in the <act_window />
shortcut. These are evaluated at installation time, which is nearly never what
you want. If you need variables in your context, use the <record /> syntax.

We can also add different contexts for the buttons. It works the same way as how we added
context keys in our action. This causes the function or action that the button calls to be
run in the context given.

Most form element attributes that are evaluated as Python also have access to the context
dictionary. The invisible and readonly attributes are examples of these. So, in cases
where you want an element to show up in a form sometimes, but not at other times, set
the invisible attribute to context.get('my_key'). For actions that lead to a
case in which the field is supposed to be invisible, set the context key to my_key: True.
This strategy enables you to adapt your form without having to rewrite it for different
occasions.

You can also set a context on relational fields, which influences how the field is loaded.
By setting the form_view_ref or tree_view_ref keys to the full XML ID of a view,
you can select a specific view for this field. This is necessary when you have multiple views
of the same type for the same object. Without this key, you get the view with the lowest
sequence number, which might not always be desirable.

See also
• The context is also used to set a default search filter. You can learn more about the

default search filter in the Defining search views recipe of this chapter.

• For more details on setting default recipe refer to the next recipe, Defining filters on
record lists – domain.

• To learn how to install the French language, consult Chapter 11,
Internationalization.

• You can refer to learn how to write the syntax for relational fields in Chapter 6,
Managing Module Data.

Defining filters on record lists – domain 281

Defining filters on record lists – domain
We've already seen an example of a domain in the first recipe of this chapter, which was
[('customer_rank', '>', 0)]. Often, you need to display a subset of all available
records from an action or allow only a subset of possible records to be the target of
a many2one relation. The way to describe these filters in Odoo is by using domains. This
recipe illustrates how to use a domain to display a selection of partners.

How to do it...
To display a subset of partners from your action, you need to perform the following steps:

1. Add an action for non-French speaking customers:

<record id="action_my_customers" model="ir.actions.act_
window">
 <field name="name">
 All my customers who don't speak French
 </field>
 <field name="res_model">res.partner</field>
 <field name="domain">
 [('type', '=', 'contact'), ('user_id', '=', uid),
('lang', '!=', 'fr_FR')]
 </field>
</record>

2. Add an action for customers who are customers or suppliers:

<record id="action_no_email_or_phone" model="ir.actions.
act_window">
 <field name="name">Customers with no email or phone</
field>
 <field name="res_model">res.partner</field>
 <field name="domain">
 ['|', ('phone', '=', False), ('email', '=',
False)]
 </field>
</record>

3. Add menus that call these actions. This is left as an exercise for the reader.

282 Backend Views

How it works...
The simplest form of domain is a list of three tuples that contain a field name of the model
in question as string in the first element, an operator as string in the second element,
and the value that the field is to be checked against as the third element. This is what
we did before, and this is interpreted as, "All those conditions have to apply to the records
we're interested in." This is actually a shortcut, because the domains know the two prefix
operators – & and | – where & is the default. So, in normalized form, the first domain will
be written as follows:

['&', '&', ('type', '=', 'contact'), ('user_id', '=', uid),
('lang', '!=', 'fr_FR')]

While they can be a bit hard to read for bigger expressions, the advantage of prefix
operators is that their scope is rigidly defined, which saves you from having to worry
about operator precedence and brackets. It's always two expressions: the first & applies
to '&', ('type', '=', 'contact'), with ('user_id', '=', uid) as the first
operand and ('lang', '!=', 'fr_FR') as the second. Then, the second & applies to
('customer', '=', True) as the first operand and ('user_id', '=', uid) as
the second.

In the second step, we have to write out the full form because we need the | operator.

For example, say we have a complex domain such as this: ['|', ('user_id',
'=', uid), '&', ('lang', '!=', 'fr_FR'), '|', ('phone', '=',
False), ('email', '=', False)]. See the following figure to learn about how
this domain is evaluated:

Figure 9.2 – The evaluation of a domain

There is also a ! operator for negation, but, given logical equivalences and negated
comparison operators such as != and not in, it is not really necessary.

Note
Note that this is a unary prefix operator, so it only applies to the following
expression in the domain and not to everything that follows.

Defining filters on record lists – domain 283

Note that the right operand doesn't need to be a fixed value when you write a domain for
a window action or other client-side domains. You can use the same minimal Python as in
the Passing parameters to forms and actions – context recipe, so you can write filters such
as changed last week or my partners.

There's more...
The preceding domains work only on fields of the model itself, while we often need to
filter based on properties of linked records. To do this, you can use the notation that's
also used in @api.depends definitions or related fields: create a dotted path from
the current model to the model you want to filter for. To search partners that have
a salesperson who is a member of a group starting with the letter G, you would use the
[('user_id.groups_id.name', '=like', 'G%')] domain. The path can be
long, so you only have to be sure that there are relation fields between the current model
and the model you want to filter for.

Operators
The following table lists the available operators and their semantics:

Table 9.1

284 Backend Views

Note that some of the operators work only with certain fields and values. For example, the
domain [('category_id', 'in', 1)] is invalid and will generate an error, while
the domain [('category_id', 'in', [1])] is valid.

Pitfalls of searching using domains
This all works fine for traditional fields, but a notorious problem is searching for the
value of a non-stored function field. People often omit the search function. This is simple
enough to fix by providing the search function in your own code, as described in Chapter
4, Application Models.

Another issue that might baffle developers is Odoo's behavior when searching through
one2many or many2many fields with a negative operator. Imagine that you have a
partner with the A tag and you search for [('category_id.name', '!=', 'B')].
Your partner shows up in the result and this is what you expected, but if you add the B
tag to this partner, it still shows up in your results, because for the search algorithm, it is
enough that there is one linked record (A in this case) that does not fulfill the criterion.
Now, if you remove the A tag so that B is the only tag, the partner will be filtered out. If
you also remove the B tag so that the partner has no tags, it is still filtered out, because
conditions on the linked records presuppose the existence of this record. In other
situations, though, this is the behavior you want, so it is not really an option to change the
standard behavior. If you need a different behavior here, provide a search function that
interprets the negation the way you need.

Important information
People often forget that they are writing XML files when it comes to domains.
You need to escape the less-than operator. Searching for records that have
been created before the current day will have to be written as [('create_
date', '<', current_date)] in XML.

Domains are used widely in Odoo. You will find them everywhere in Odoo; they are used
for searching, filtering, security rules, search views, user actions, and more.

If you ever need to manipulate a domain you didn't create programmatically, use the
utility functions provided in odoo.osv.expression. The is_leaf, normalize_
domain, AND, and OR functions will allow you to combine domains exactly the way that
Odoo does. Don't do this yourself, because there are many corner cases that you have to
take into account, and it is likely that you'll overlook one.

Defining list views 285

See also
• For the standard application of domains, see the Search views recipe.

Defining list views
After having spent quite some time on the form view, we'll now take a quick look at how
to define list views. Internally, these are called tree views in some places and list views
in others, but given that there is another construction within the Odoo view framework
called tree, we'll stick to list here.

How to do it...
1. Define your list view:

<record id="tree_all_contacts" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <tree
 decoration-bf="customer_rank > 0"
 decoration-danger="supplier_rank > 0"
 decoration-warning="customer_rank > 0
 and supplier_rank > 0">
 <field name="name" />
 <field name="user_id" widget="many2one_
avatar_user"/>
 <field name="state_id" optional="hide" />
 <field name="country_id" optional="show" />
 <field name="customer_rank" invisible="1" />
 <field name="supplier_rank" invisible="1" />
 </tree>
 </field>
</record>

2. Register a tree view in the action we created in the Adding a menu item and window
action recipe of this chapter:

<record id='action_all_contacts' model='ir.actions.act_
window'>
 <field name="name">All Contacts</field>
 <field name="res_model">res.partner</field>
 <field name="view_mode">tree,form</field>
 <field name="context">
 {'tree_view_ref': 'my_module.tree_all_contacts'}

286 Backend Views

 </field>
 <field name="limit">20</field>
</record>

3. Add menus that call these actions. This is left as an exercise for the reader.

Install/Upgrade the module. After that, you will see our tree view for the customers. And
if you check it, it will show different row styles based on our conditions.

How it works...
You already know most of what happens here. We define a view, of the tree type this
time, and attach it to our action with an ir.actions.act_window.view element. So,
the only thing left to discuss is the tree element and its semantics. With a list, you don't
have many design choices, so the only valid children of this element are the field and
button elements. You can also use some widgets in list view; in our example, we have
used the many2one_avatar_user widget. The tree view has the support of a special
widget called handle. This is specific to list views. It is meant for integer fields and
renders a drag handle that the user can use to drag a row to a different position in the list,
thereby updating the field's value. This is useful for sequence or priority fields.

By using the optional attribute, you can show fields optionally. Adding the optional
attribute to a field will allow the user to hide and show the column at any time from the
UI. In our example, we have used it for the country and state fields.

What is new here are the decoration attributes in the tree element. This contains
rules as to which font and/or color is chosen for the row, given in the form of
decoration-$name="Python code". All matches turn into the corresponding
CSS class, so the previous view renders partners that are both suppliers and customers
in brown, customers only in bold, and suppliers only in red. In your Python code, you
can only use the fields you named in the view definition, which is why we have to pull
the customer and supplier fields too. We made these invisible because we only need
the data and don't want to bother our users with the two extra columns. The possible
classes are decoration-bf (bold), decoration-it (italic), and the semantic
bootstrap classes, decoration-danger, decoration-info, decoration-muted,
decoration-primary, decoration-success, and decoration-warning.

Defining search views 287

There's more...
For numeric fields, you can add a sum attribute that causes this column to be summed up
with the text you set in the attribute as a tooltip. Less common are the avg, min, and max
attributes, which display the average, minimum, and maximum, respectively. Note that
these four only work on the records that are currently visible, so you might want to adjust
the action's limit (covered earlier in the Adding a menu item and window action recipe)
in order for the user to see all the records immediately.

A very interesting attribute for the tree element is editable. If you set this to top or
bottom, the list behaves entirely differently. Without it, clicking on a row opens a form
view for the row. With it, clicking on a row makes it editable inline, with the visible fields
rendered as form fields. This is particularly useful in embedded list views, which are
discussed later in the Defining embedded views recipe of this chapter. The choice of top or
bottom relates to whether new lines will be added to the top or bottom of the list.

By default, records are ordered according to the _order property of the displayed model.
The user can change the ordering by clicking on a column header, but you can also set
a different initial order by setting the default_order property in the tree element.
The syntax is the same as in _order.

Important tip
Ordering is often a source of frustration for new developers. As Odoo lets
PostgreSQL do the work here, you can only order by fields that PostgreSQL
knows about, and only the fields that live in the same database table. So,
if you want to order by a function or a related field, ensure that you set
store=True. If you need to order by a field inherited from another model,
declare a stored related field.

The create, edit, and delete attributes of the tree element work the same as for the
form element we described earlier in the Adding content and widgets to a form view recipe
of this chapter. They also determine the available controls if the editable attribute is set.

Defining search views
When opening your list view, you'll notice the search field to the upper right. If you type
something there, you get suggestions about what to search for, and there is also a set of
predefined filters to choose from. This recipe will walk you through how to define these
suggestions and options.

288 Backend Views

How to do it...
1. Define your search view:

<record id="search_all_customers" model="ir.ui.view">

 <field name="model">res.partner</field>

 <field name="arch" type="xml">

 <search>

 <field name="name" />

 <field name="category_id"
 filter_domain="[('category_id', 'child_
of', self)]" />

 <field name="bank_ids" widget="many2one" />

 <filter name="suppliers" string="Suppliers"
 domain="[('supplier_rank', '>', 0)]" />
 <group expand="0" string="Group By">
 <filter string="Country" name="country"
 context="{'group_by':'country_
id'}"/>
 </group>

 </search>

 </field>

</record>

2. Tell your action to use it:

<record id="action_all_customers" model="ir.actions.act_
window">

 <field name="name">All customers</field>

 <field name="res_model">res.partner</field>

 <field name="view_mode">tree,form</field>

 <field name="search_view_id" ref="search_all_
customers" />

</record>

When you type something into the search bar now, you'll be offered the ability to search
for this term in the name, categories, and bank account fields. If your term
happens to be a substring of a bank account number in your system, you'll even be offered
to search exactly for this bank account.

Defining search views 289

How it works...
In the case of name, we simply listed the field as the one to be offered to the user to search
for. We left the semantics at the default, which is a substring search for character fields.

For categories, we do something more interesting. By default, your search term is applied
to a many2many field trigger, name_search, which would be a substring search in
the category names in this case. However, depending on your category structure, it can
be very convenient to search for partners who have the category you're interested in
or a child of it. Think of a main category, Newsletter subscribers, with the subcategories
Weekly newsletter, Monthly newsletter, and a couple of other newsletter types. Searching
for newsletter subscribers with the preceding search view definition will give you everyone
who is subscribed to any of those newsletters in one go, which is a lot more convenient
than searching for every single type and combining the results.

The filter_domain attribute can contain an arbitrary domain, so you're restricted
neither to searching for the same field you named in the name attribute nor to using only
one term. The self variable is what the user filled in, and also the only variable that you
can use here.

Here's a more elaborate example from the default search view for partners:

<field name="name"
 filter_domain="[
 '|', '|',
 ('display_name', 'ilike', self),
 ('ref', '=', self),
 ('email', 'ilike', self)]"/>

This means that the user doesn't have to think about what to search for. All they need to
do is type in some letters, press Enter, and, with a bit of luck, one of the fields mentioned
contains the string we're looking for.

For the bank_ids field, we used another trick. The type of field not only decides the
default way of searching for the user's input, but it also defines the way in which Odoo
presents the suggestions. Also, given that many2one fields are the only ones that offer
auto-completion, we force Odoo to do that, even though bank_ids is a one2many field,
by setting the widget attribute. Without this, we will have to search in this field, without
completion suggestions. The same applies to many2many fields.

Note
Note that every field with a many2one widget set will trigger a search on its
model for every one of the user's keystrokes; don't use too many of them.

290 Backend Views

You should also put the most-used fields on the top, because the first field is what is
searched if the user just types something and presses Enter. The search bar can also be
used with the keyboard; select a suggestion by pressing the down arrow and open the
completion suggestion of a many2one by pressing the right arrow. If you educate your
users in this and pay attention to the sensible ordering of fields in the search view, this will
be much more efficient than typing something first, grabbing the mouse, and selecting
an option.

The filter element creates a button that adds the content of the filter's domain
attribute to the search domain. You should add a logical internal name and a string
attribute to describe the filter to your users.

The <group> tag is used to provide a grouping option under the Group by button. In this
recipe, we have added an option to group records based on the country_id field.

There's more...
You can group filters with the group tag, which causes them to be rendered slightly closer
together than the other filters, but this has semantic implications, too. If you put multiple
filters in the same group and activate more than one of them, their domains will be
combined with the | operator, while filters and fields not in the same group are combined
with the & operator. Sometimes, you might want disjunction for your filters, which is
where they filter for mutually exclusive sets, in which case selecting both of them will
always lead to an empty result set. Within the same group, you can achieve the same effect
with the separator element.

Note
Note that if the user fills in multiple queries for the same field, they will be
combined with | too, so you don't need to worry about that.

Apart from the field attribute, the filter element can have a context attribute,
whose content will be merged with the current context and eventually other context
attributes in the search view. This is essential for views that support grouping (refer to
the Defining kanban view and Defining graph view recipes), because the resulting context
determines the field(s) to be grouped with the group_by key. We'll look into the details
of grouping in the appropriate recipes, but the context has other uses, too. For example,
you can write a function field that returns different values depending on the context, and
then you can change the values by activating a filter.

Adding a search filter side panel 291

The search view itself also responds to context keys. In a very similar way to default values
when creating records, you can pass default values for a search view through the context.
If we had set a context of {'search_default_suppliers': 1} in our previous
action, the suppliers filter would have been preselected in the search view. This works
only if the filter has a name, though, which is why you should always set it. To set defaults
for fields in the search view, use search_default_$fieldname.

Furthermore, the field and filter elements can have a groups property with the
same semantics as in the form views in order to make the element only visible to certain
groups.

See also
• For further details about manipulating the context, see the Passing parameters to

forms and actions – context recipe.

• Users who speak languages with heavy use of diacritical marks will probably
want to have Odoo search for e, è, é, and ê when filling in the e character. This
is a configuration of the PostgreSQL server, called unaccent, which Odoo has
special support for, but is outside the scope of this book. Refer to https://www.
postgresql.org/docs/10/unaccent.html for more information about
unaccent.

Adding a search filter side panel
Odoo provides one more way to display search filters, which is a search filter side panel.
This panel shows a list of filters on the side of the view. A search panel is very useful when
search filters are used frequently by the end user.

Getting ready
The search panel is part of the search view. So, for this recipe, we will continue using
the my_module add-on from the previous recipe. We will add our search panel to the
previously designed search view.

How to do it...
Add <searchpanel> in the search view, as shown here:

<record id="search_all_customers" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="arch" type="xml">

https://www.postgresql.org/docs/10/unaccent.html
https://www.postgresql.org/docs/10/unaccent.html

292 Backend Views

 <search>
 <field name="name" />
 <field name="category_id"
 filter_domain="[('category_id', 'child_of',
self)]" />
 <field name="bank_ids" widget="many2one" />
 <filter name="suppliers"
 string="Suppliers"
 domain="[('supplier_rank', '>', 0)]" />
 <group expand="0" string="Group By">
 <filter string="Country" name="country"
 context="{'group_by':'country_id'}"/>
 </group>
 <!-- Search Panel code -->
 <searchpanel>
 <field name="user_id" icon="fa fa-users"/>
 <field name="category_id" icon="fa fa-list"
 select="multi"/>
 </searchpanel>
 </search>
 </field>
</record>

Update the module to apply the modification. After the update, you will see the search
panel on the left side of the view.

How it works...
To add the search panel, you will need to use the <searchpanel> tag in the search view.
To add your filter, you will need to add a field in the search panel.

In our example, first we added a user_id field. You also need to add an icon attribute
to the field. This icon will be displayed before the title of the filter. Once you add the field
in the search panel, it will display the title with an icon, and below that, a list of all the
users. Upon clicking on a user, the records in the list view will be filtered and you will only
see the contacts for the selected user. In this filter, only one item can be active, meaning
once you click on another user's filter, the previous user's filter will be removed. If you
want to activate multi-user filters, you can use the select="multi" attribute. If you
use that attribute, you will find the checkbox for each filter option, and you will be able to
activate multiple filters at a time. We have used the select="multi" attribute on the
category_id filter. This will allow us to select and filter by multiple categories at once.

Changing existing views – view inheritance 293

Note
Be careful when you are using the side panel filter on many2one or
many2many. If the relation model has too many records, only the top 200
records will be displayed, to avoid performance issues.

There's more...
If you want to display search panel items in groups, you can use the groupby attribute on
a field. For example, if you want to group a category based on its parent hierarchy, you can
add the groupby attribute with the parent_id field, as here:

<field name="category_id"
 icon="fa fa-list"
 select="multi"
 groupby="parent_id"/>

This will show the category filters grouping by the parent category of the record.

Changing existing views – view inheritance
So far, we have ignored the existing views and declared completely new ones. While this is
didactically sensible, you'll rarely be in situations where you'll want to define a new view
for an existing model. Instead, you'll want to slightly modify the existing views, be it to
simply have them show a field you added to the model in your add-on, or to customize
them according to your needs or your customers' needs.

In this recipe, we'll change the default partner form to show the record's last modification
date and make the mobile field searchable by modifying the search view. Then, we'll
change the position of one column in the partners' list view.

How to do it...
1. Inject the field into the default form view:

<record id="view_partner_form" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_partner_form"
/>
 <field name="arch" type="xml">
 <field name="website" position="after">
 <field name="write_date" />
 </field>

294 Backend Views

 </field>
</record>

2. Add the field to the default search view:

<record id="view_res_partner_filter" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_res_partner_
filter" />
 <field name="arch" type="xml">
 <xpath expr="." position="inside">
 <field name="mobile" />
 </xpath>
 </field>
</record>

3. Add the field to the default list view:

<record id="view_partner_tree" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_partner_tree"
/>
 <field name="arch" type="xml">
 <field name="email" position="after">
 <field name="phone" position="move"/>
 </field>
 </field>
</record>

After updating your module, you should see the Last updated on field beneath the
website field on the partner form. When you type something into the search box, it should
suggest that you search for the partners on the mobile field, and in the partner's list view,
you will see that the order of the phone number and email has changed.

How it works...
In step 1, we added a basic structure for the form inheritance. The crucial field here is, as
you've probably guessed, inherit_id. You need to pass it the XML ID of the view you
want to modify (inherit from). The arch field contains instructions on how to modify the
existing XML nodes within the view you're inheriting from. You should actually think of
the whole process as simple XML processing, because all the semantic parts only come
a lot later.

Changing existing views – view inheritance 295

The most canonical instruction within the arch field of an inherited view is the field
element, which has the required attributes, name and position. As you can have
every field only once on a form, the name already uniquely identifies a field. With the
position attribute, we can place whatever we put within the field element, either
before, inside, or after the field we named. The default is inside, but for
readability, you should always name the position you require. Remember that we're not
talking semantics here; this is about the position in the XML tree relative to the field we
have named. How this will be rendered afterward is a completely different matter.

Step 2 demonstrates a different approach. The xpath element selects the first element
that matches the XPath expression named in the expr attribute. Here, the position
attribute tells the processor where to put the contents of the xpath element.

Note
If you want to create an XPath expression based on a CSS class, Odoo provides
a special function called hasclass. For example, if you want to select a
<div> element with the test_class CSS class, then the expression will be
expr="//div[hasclass('test_class')]".

Step 3 shows how you can change the position of an element. This option was introduced
in version 12 and it is rarely used. In our example, we moved the phone field to come after
the email field with the position=move option.

XPath might look somewhat scary but it is a very efficient means of selecting the node
you need to work on. Take the time to look through some simple expressions; it's worth it.
You'll likely stumble upon the term context node, to which some expressions are relative.
In Odoo's view inheritance system, this is always the root element of the view you're
inheriting from.

For all the other elements found in the arch field of an inheriting view, the processor
looks for the first element with the same node name and matching attributes (with the
attribute position excluded, as this is part of the instruction). Use this only in cases where
it is very unlikely that this combination is not unique, such as a group element combined
with a name attribute.

Important tip
Note that you can have as many instruction elements within the arch field as
you need. We only used one per inherited view because there's nothing else we
want to change currently.

296 Backend Views

There's more...
The position attribute has two other possible values: replace and attributes.
Using replace causes the selected element to be replaced with the content of the
instruction element. Consequently, if you don't have any content, the selected element can
simply be removed. The preceding list or form view would cause the email field to be
removed:

<field name="email" position="replace" />

Warning
Removing fields can cause other inheriting views to break and several other
undesirable side effects, so avoid that if possible. If you really need to remove
fields, do so in a view that comes late in the order of evaluation (refer to the
next section, Order of evaluation in view inheritance, for more information).

attributes has very different semantics from the preceding examples. The processor
expects the element to contain the attribute elements with a name attribute. These
elements will then be used to set attributes on the selected element. If you want to heed
the earlier warning, you should set the invisible attribute to 1 for the email field:

<field name="email" position="attributes">

 <attribute name="invisible">1</attribute>

</field>

An attribute node can have add and remove attributes, which in turn should contain
the value to be removed from or added to the space-separated list. This is very useful for
the class attribute, where you'd add a class (instead of overwriting the whole attribute)
by using the following:

<field name="email" position="attributes">

 <attribute name="class" add="oe_inline" separator=" "/>

</field>

This code adds the oe_inline class to the email field. If the field already has a class
attribute present, Odoo will join the value with the value of the separator attribute.

Changing existing views – view inheritance 297

Order of evaluation in view inheritance
As we have only one parent view and one inheriting view currently, we don't run into any
problems with conflicting view overrides. When you have installed a couple of modules,
you'll find a lot of overrides for the partner form. This is fine as long as they change
different things in a view, but there are occasions where it is important to understand how
overriding works in order to avoid conflicts.

Direct descendants of a view are evaluated in ascending order of their priority field,
so views with a lower priority are applied first. Every step of inheritance is applied to the
result of the first, so if a view with priority 3 changes a field and another one with priority
5 removes it, this is fine. This does not work, however, if the priorities are reversed.

You can also inherit from a view that is an inheriting view itself. In this case, the second-
level inheriting view is applied to the result of the view it inherits from. So, if you have
four views, A, B, C, and D, where A is a standalone form, B and C inherit from A, and D
inherits from B, the order of evaluation is A, B, D, C. Use this to enforce an order without
having to rely on priorities; this is safer in general. If an inheriting view adds a field and
you need to apply changes to this field, inherit from the inheriting view and not from the
standalone one.

Important information
This kind of inheritance always works on the complete XML tree from the
original view, with modifications from the previous inheriting views applied.

The following points provide information on some advanced tricks that are used to tweak
the behavior of view inheritance:

• For inheriting views, a very useful and not very well-known field is groups_id.
This field causes the inheritance to take place only if the user requesting the parent
view is a member of one of the groups mentioned there. This can save you a lot
of work when adapting the user interface for different levels of access, because
with inheritance, you can have more complex operations than just showing or not
showing the elements based on group membership, as is possible with the groups
attribute on form elements.

• You can, for example, remove elements if the user is a member of a group (which
is the inverse of what the groups attribute does). You can also carry out some
elaborate tricks, such as adding attributes based on group membership. Think
about simple things such as making a field read-only for certain groups, or more
interesting concepts such as using different widgets for different groups.

298 Backend Views

• What was described in this recipe has the mode field of the original view set to
primary, while the inheriting views have the mode extension, which is the default.
We will investigate the case that the mode of an inheriting view is set to primary
later, where the rules are slightly different.

Defining document-style forms
In this recipe, we'll review some design guidelines in order to present a uniform user
experience.

How to do it...
1. Start your form with a header element:

<header>
 <button type="object" name="open_commercial_entity"
 string="Open commercial partner"
 class="btn-primary" />
</header>

2. Add a sheet element for content:

<sheet>

3. Put in the stat button, which will be used to show total invoiced amount and
redirect to invoices:

<div class="oe_button_box" name="button_box">
 <button type="object" class="oe_stat_button"
 icon="fa-pencil-square-o"
 name="action_view_partner_invoices">
 <div class="o_form_field o_stat_info">

 <field name="total_invoiced"/>

 Invoiced
 </div>
 </button>
</div>

Defining document-style forms 299

4. Add some prominent field(s):

<div class="oe_left oe_title">
 <label for="name" />
 <h1>
 <field name="name" />
 </h1>
</div>

5. Add your content; you can use a notebook if there are a lot of fields:

<group>
 <field name="category_id" widget="many2many_tags" />
 <field name="email"/>
 <field name="mobile"/>
</group>

6. After the sheet, add the chatter widget (if applicable):

</sheet>
<div class="oe_chatter">
 <field name="message_follower_ids" widget="mail_
followers"/>
 <field name="activity_ids" widget="mail_activity"/>
 <field name="message_ids" widget="mail_thread"/>
</div>

Let's have a look at how this recipe works.

How it works...
The header should contain buttons that execute actions on the object that the user
currently sees. Use the btn-primary class to make buttons visually stand out (in purple
at the time of writing), which is a good way to guide the user regarding which is the most
logical action to execute at the moment. Try to have all the highlighted buttons to the left
of the non-highlighted buttons and hide the buttons that are not relevant in the current
state (if applicable). If the model has a state, show it in the header using the statusbar
widget. This will be rendered as right-aligned in the header.

The sheet element is rendered as a stylized sheet, and the most important fields should
be the first thing the user sees when looking at it. Use the oe_title and oe_left
classes to have them rendered in a prominent place (floating left with slightly adjusted font
sizes at the time of writing).

300 Backend Views

If there are other records of interest concerning the record the user currently sees (such
as the partner's invoices on a partner form), put them in an element with the oe_right
and oe_button_box classes; this aligns the buttons in it to the right. On the buttons
themselves, use the oe_stat_button class to enforce a uniform rendering of the
buttons. It's also customary to assign an icon class from the Font Awesome icons for the
icon attribute. You can learn more about Font Awesome at https://fontawesome.
com/v4.7.0/icons/.

You can use the oe_chatter class and Chatter widgets to get the default chatter at the
bottom of the form view. For this, you need to use the mail.thread mixin. We will see
this in detail in Chapter 23, Managing Emails in Odoo.

Important information
Even if you do not like this layout, stick to the element and class names
described here, and adjust what you need with CSS and possibly JavaScript.
This will make the user interface more compatible with existing add-ons and
allow you to integrate better with core add-ons.

See also
• To find out more about Font Awesome, go to https://fontawesome.com/

v4.7.0/icons/.

• For more details on the mail.thread mixin, refer to Chapter 23, Managing
Emails in Odoo.

Dynamic form elements using attrs
So far, we have only looked into changing forms depending on the user's groups (the
groups attribute on elements and the groups_id field on inherited views) and nothing
more. This recipe will show you how to modify the form view based on the value of the
fields in it.

https://fontawesome.com/v4.7.0/icons/
https://fontawesome.com/v4.7.0/icons/
https://fontawesome.com/v4.7.0/icons/
https://fontawesome.com/v4.7.0/icons/

Defining embedded views 301

How to do it...
1. Define an attribute called attrs on a form element:

<field name="parent_id"
 attrs="{
 'invisible': [('is_company', '=', True)],
 'required': [('is_company', '=', False)]
 }" />

2. Ensure that all the fields you refer to are available in your form:

<field name="is_company"/>

This will make the parent_id field invisible if the partner is a company and required if
it's not a company.

How it works...
The attrs attribute contains a dictionary with invisible, required, and readonly
keys (all of which are optional). The values are domains that may refer to the fields that
exist on the form (and really only those, so there are no dotted paths), and the whole
dictionary is evaluated according to the rules for client-side Python, as described earlier
in the Passing parameters to forms and actions – context recipe of this chapter. So, for
example, you can access the context in the right-hand operand.

There's more...
While this mechanism is quite straightforward for scalar fields, it's less obvious how to
handle the one2many and many2many fields. In fact, in standard Odoo, you can't do
much with those fields within an attrs attribute. However, if you only need to check
whether such a field is empty, use [[6, False, []]] as your right-hand operand.

Defining embedded views
When you show a one2many or a many2many field on a form, you don't have much
control over how it is rendered if you haven't used one of the specialized widgets. Also, in
the case of the many2one fields, it is sometimes desirable to be able to influence the way
the linked record is opened. In this recipe, we'll look at how to define private views for
those fields.

302 Backend Views

How to do it...
1. Define your field as usual, but don't close the tag:

<field name="child_ids">

2. Write the view definition(s) into the tag:

<tree>
 <field name="name" />
 <field name="email" />
 <field name="phone" />
</tree>
<form>
 <group>
 <field name="name" />
 <field name="function" />
 </group>
</form>

3. Close the tag:

</field>

How it works...
When Odoo loads a form view, it first checks whether the relational type fields have
embedded views in the field, as outlined previously. Those embedded views can have
the exact same elements as the views we defined before. Only if Odoo doesn't find an
embedded view of some type does it use the model's default view of this type.

There's more...
While embedded views might seem like a great feature, they complicate view inheritance
a lot. For example, as soon as embedded views are involved, field names are not
guaranteed to be unique, and you'll usually have to use some elaborate XPaths to select
elements within an embedded view.

So, in general, you should better define standalone views and use the form_view_ref
and tree_view_ref keys, as described earlier in the Having an action open a specific
view recipe of this chapter.

Displaying attachments on the side of the form view 303

Displaying attachments on the side of the
form view
In some applications, such as invoicing, you need to fill in data based on a document. To
ease the data-filling process, a new feature was added to Odoo version 12 to display the
document on the side of the form view.

In this recipe, we will learn how to display the form view and the document side by side:

Figure 9.3 – Cascading attachments and the form view

Important information
This feature is only meant for large displays (>1534px), so if you have a small
viewport, this feature will be hidden.
Internally, this feature uses some responsive utilities, so this feature only works
in the Enterprise edition. However, you can still use this code in your module.
Odoo will automatically handle this, so if the module is installed in the
Enterprise edition, it will show the document, while in the Community edition,
it will hide everything without any side effects.

304 Backend Views

How to do it...
We will enable this feature to modify a form view for the res.partner model,
as follows:

<record id="view_all_customers_form" model="ir.ui.view">
 <field name="name">All customers</field>
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <form>
 <sheet>
 <group>
 <field name="name" />
 <field name="email"/>
 </group>
 </sheet>
 <div class="o_attachment_preview"
 options="{types: ['image', 'pdf'], 'order':
'desc'}" />
 <div class="oe_chatter">
 <field name="message_follower_ids"
widget="mail_followers"/>
 <field name="activity_ids" widget="mail_
activity"/>
 <field name="message_ids" widget="mail_
thread"/>
 </div>
 </form>
 </field>
</record>

Update the module to apply the changes. You need to upload a PDF or image via the
record chatter. When you upload it, Odoo will display the attachment on the side.

How it works...
This feature only works if your model has inherited the mail.thread model. To
show the document on the side of any form view, you will need to add an empty <div>
with the o_attachment_preview class before the chatter elements. That's it – the
documents attached in the chatter will be displayed on the side of the form view.

Defining kanban views 305

By default, pdf and image documents will be displayed in ascending order by date. You
can change this behavior by providing extra options, which include the following:

• type: You need to pass the list of document types you want to allow. Only two
values are possible: pdf and image. For example, if you want to display only pdf
type images, you can pass {'type': ['pdf']}.

• order: Possible values are asc and desc. These allow you to show documents in
ascending order or descending order of the document creation date.

There's more...
In most cases, you want to display documents on the side of the initial state of any record.
If you want to hide the attachment preview based on domain, you can use attrs on the
<div> tag to hide the preview.

Take a look at the following example: it will hide the PDF preview if the value of the
state field is not draft:

<div class="o_attachment_preview"
 attrs="{'invisible': [('state', '!=', 'draft')]/>

This is how you can hide attachments when they are not needed. Usually, this feature is
used to fill data from PDFs and is only activated in draft mode.

Defining kanban views
So far, we have presented you with a list of records that can be opened to show a form.
While those lists are efficient when presenting a lot of information, they tend to be slightly
boring, given the lack of design possibilities. In this recipe, we'll take a look at kanban
views, which allow us to present lists of records in a more appealing way.

How to do it...
1. Define a view of the kanban type:

<record id="view_all_customers_kanban" model="ir.
ui.view">

 <field name="model">res.partner</field>

 <field name="arch" type="xml">

 <kanban>

306 Backend Views

2. List the fields you'll use in your view:

 <field name="name" />

 <field name="supplier_rank" />

 <field name="customer_rank" />

3. Implement a design:

 <templates>

 <t t-name="kanban-box">

 <div class="oe_kanban_card">

 <field name="name" />

 <t t-if="record.supplier_rank.raw_
value or
 record.customer_rank.raw_
value">
 is
 <t t-if="record.customer_rank.raw_
value">
 a customer
 </t>
 <t t-if="record.customer_rank.raw_
value and
 record.supplier_rank.raw_
value">
 and
 </t>
 <t t-if="record.supplier_rank.raw_
value">
 a supplier
 </t>
 </t>

 </div>

 </t>

 </templates>

Defining kanban views 307

4. Close all the tags:

 </kanban>

 </field>

</record>

5. Add this view to one of your actions. This is left as an exercise for the reader. You
will find a full working example in the GitHub example files: https://github.
com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-
Edition/tree/master/Chapter09/15_kanban_view/my_module.

How it works...
We need to give a list of fields to load in step 2 in order to be able to access them later. The
content of the templates element must be a single t element with the t-name attribute
set to kanban-box.

What you write inside this element will be repeated for each record, with special semantics
for t elements and t-* attributes. For details about that, refer to the Using client-side
QWeb templates recipe from Chapter 15, Web Client Development, because technically
kanban views are just an application of QWeb templates.

There are a few modifications that are particular to kanban views. You have access to
the read_only_mode, record, and widget variables during evaluation. Fields
can be accessed using record.fieldname, which is an object with the value and
raw_value properties, where value is the field's value that has been formatted in a way
that is presentable to the user, and raw_value is the field's value as it comes from the
database.

Important information
many2many fields make an exception here. You'll only get an ID list through
the record variable. For a user-readable representation, you must use the
field element.

Note the type attribute of the link at the top of the template. This attribute makes Odoo
generate a link that opens the record in view mode (open) or edit mode (edit), or it
deletes the record (delete). The type attribute can also be object or action, which
will render links that call a function of the model or an action. In both cases, you need
to supplement the attributes for buttons in form views, as outlined in the Adding buttons
to forms recipe of this chapter. Instead of the a element, you can also use the button
element; the type attribute has the same semantics there.

https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/tree/master/Chapter09/15_kanban_view/my_module
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/tree/master/Chapter09/15_kanban_view/my_module
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/tree/master/Chapter09/15_kanban_view/my_module

308 Backend Views

There's more...
There are a few more helper functions worth mentioning. If you need to generate
a pseudo-random color for an element, use the kanban_color(some_variable)
function, which will return a CSS class that sets the background and color properties.
This is usually used in the t-att-class elements.

If you want to display an image stored in a binary field, use kanban_
image(modelname, fieldname, record.id.raw_value), which returns
a data URI if you included the field in your fields list and the field is set, a placeholder
if the field is not set, or a URL that makes Odoo stream the field's contents if you didn't
include the field in your fields list. Do not include the field in the fields list if you need to
display a lot of records simultaneously or you expect very big images. Usually, you'd use
this in a t-att-src attribute of an img element.

Important tip
Doing design in kanban views can be a bit trying. What often works better is
generating HTML using a function field of the HTML type and generating this
HTML from a QWeb view. This way, you're still doing QWeb, but on the server
side, which is a lot more convenient when you need to work on a lot of data.

See also
• To know more about template elements, refer to the Using client-side QWeb

templates recipe from Chapter 15, Web Client Development.

Showing kanban cards in columns according
to their state
This recipe shows you how to set up a kanban view where the user can drag and drop
a record from one column to the other, thereby pushing the record in question into
another state.

Getting ready
From now on, we'll make use of the project module here, as this defines models that lend
themselves better to date- and state-based views than those defined in the base module.
So, before proceeding, add project to the dependencies list of your add-on.

Showing kanban cards in columns according to their state 309

How to do it...
1. Define a kanban view for the tasks:

<record id="kanban_tasks" model="ir.ui.view">
 <field name="name">project.task.kanban</field>
 <field name="model">project.task</field>
 <field name="sequence">20</field>
 <field name="arch" type="xml">
 <kanban default_group_by="stage_id">
 <field name="stage_id" />
 <field name="name" />
 <templates>
 <t t-name="kanban-box">
 <div class="oe_kanban_card oe_kanban_
global_click">
 <field name="name" />
 </div>
 </t>
 </templates>
 </kanban>
 </field>
</record>

2. Add a menu and an action using this view. This is left as an exercise for the reader.

How it works...
Kanban views support grouping, which allows you to display records that have a group
field in common in the same column. This is commonly used for a state or stage_id
field, because it allows the user to change this field's value for a record by simply dragging
it into another column. Set the default_group_by attribute on the kanban element
to the name of the field you want to group by in order to make use of this functionality.

To control the behavior of kanban grouping, there are a few options available in Odoo:

• group_create: This option is used to hide or show the Add a new column
option in grouped kanban. The default value is true.

• group_delete: This option enables or disables the Column delete option in the
kanban group context menu. The default value is true.

• group_edit: This option enables or disables the Column edit option in the
kanban group context menu. The default value is true.

310 Backend Views

• archivable: This option enables or disables the option to archive and restore
the records from the kanban group context menu. This only works if the active
Boolean field is present in your model.

• quick_create: With this option, you can create records directly from the
kanban view.

• quick_create_view: By default, the quick_create option displays only the
name field in kanban. But with the quick_create_view option, you can give the
reference of the minimal form view to display it in kanban.

• on_create: If you don't want to use quick_create when creating a new record
and you don't want to redirect the user to the form view either, you can give the
reference of the wizard so it will open the wizard on a click of the Create button.

There's more...
If not defined in the dedicated attribute, any search filter can add grouping by setting
a context key named group_by to the field name(s) to group by.

Defining calendar views
This recipe walks you through how to display and edit information about dates and
duration in your records in a visual way.

How to do it...
Follow these steps to add a calendar view for the project.task model:

1. Define a calendar view:

<record id="view_project_task_calendar" model="ir.
ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <calendar date_start="date_assign" date_
stop="date_end" color="project_id">
 <field name="name" />
 <field name="user_id" />
 </calendar>
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

Defining graph view and pivot view 311

How it works...
The calendar view needs to be passed the field names in the date_start and date_
stop attributes to indicate which fields to look at when building the visual representation.
Only use fields with the Datetime or Date type; other types of fields will not work and
will instead generate an error. While date_start is required, you can leave out date_
stop and set the date_delay attribute instead, which is expected to be a Float field
that represents the duration in hours.

The calendar view allows you to give records that have the same value in a field the
same (arbitrarily assigned) color. To use this functionality, set the color attribute to the
name of the field you need. In our example, we can see at a glance which tasks belong to
the same project, because we assigned project_id as the field to determine the color
groups.

The fields you name in the calendar element's body are shown within the block that
represents the time interval covered, separated by commas.

There's more...
The calendar view has some other helpful attributes. If you want to open calendar
entries in a popup instead of the standard form view, set event_open_popup to 1.
By default, you create a new entry by just filling in some text, which internally calls the
model's name_create function to actually create the record. If you want to disable this
behavior, set quick_add to 0.

If your model covers a whole day, set all_day to a field's name that is true if the record
covers the whole day, and false otherwise.

Defining graph view and pivot view
In this recipe, we'll take a look at Odoo's business intelligence views. These are read-only
views that are meant to present data.

Getting ready
We're still making use of the project module here. You can configure a graph and pivot
views to get different statistics. For our example, we will focus on the assigned user. We
will generate a graph and pivot view to see the users of the tasks per user. By the way, the
end user can generate statistics of their choice by modifying the view options.

312 Backend Views

How to do it...
1. Define a graph view using bars:

<record id="view_project_tasks_graph" model="ir.ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <graph type="bar">
 <field name="user_id"/>
 <field name="stage_id"/>
 </graph>
 </field>
</record>

2. Define a pivot view:

<record id="view_project_tasks_pivot" model="ir.ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <pivot>
 <field name="user_id" type="row"/>
 <field name="project_id" type="col"/>
 <field name="stage_id" type="col"/>
 </pivot>
 </field>
</record>

3. Add menus and actions using this view. This is left as an exercise for the reader.

If everything went well, you should see graphs that show how many tasks are assigned to
which user and the state of those tasks.

How it works...
The graph view is declared with a root element, graph. The type attribute on a graph
element determines the initial mode of a graph view. The possible values are bar,
line, and chart, but bar is the default. The graph view is highly interactive, so the
user can switch between the different modes and also add and remove fields. If you use
type="bar", you can also use stacked="1" to show a stacked bar chart during
grouping.

Defining the cohort view 313

The field elements tell Odoo what to display on which axis. For all graph modes, you
need at least one field with the row type and one with the measure type to see anything
useful. Fields of the row type determine the grouping, while those of the measure type
stand for the value(s) to be shown. Line graphs only support one field of each type, while
charts and bars handle two group fields with one measure nicely.

Pivot views have their own root element, pivot. The pivot view supports an arbitrary
amount of group and measure fields. Nothing will break if you switch to a mode that
doesn't support the number of groups and measures you defined; some fields will just be
ignored and the result might not be as interesting as it could be.

There's more...
For all graph types, Datetime fields are tricky to group, because you'll rarely encounter
the same field value here. So, if you have a Datetime field of the row type, also specify
the interval attribute with one of the following values: day, week, month, quarter,
or year. This will cause the grouping to take place in the given interval.

Important information
Grouping, like sorting, relies heavily on PostgreSQL. So, here also, the rule
applies that a field must live in the database and in the current table in order to
be usable.

It is a common practice to define database views that collect all the data you
need and define a model on top of this view in order to have all the necessary
fields available.

Depending on the complexity of your view and the grouping, building the
graph can be quite an expensive exercise. Consider setting the auto_
search attribute to False in these cases, so that the user can first adjust all
the parameters and only then trigger a search.

The pivot table also supports grouping in columns. Use the col type for the fields you
want to have there.

Defining the cohort view
For the cohort analysis of records, the new cohort view was added in Odoo version 12.
The cohort view is used to find out the life cycle of a record over a particular time span.
With the cohort view, you can see the churn and retention rate of any object for
a particular time.

314 Backend Views

Getting ready
The cohort view is part of the Odoo Enterprise edition, so you cannot use it with only
the Community edition. If you are using the Enterprise edition, you need to add web_
cohort in the manifest file of your module. For our example, we will create a view to see
the cohort analysis for tasks.

How to do it...
Follow these steps to add the cohort view for the project.task model:

1. Define a cohort view:

<record id="view_project_tasks_graph" model="ir.ui.view">
 <field name="name">project task cohort</field>
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <cohort date_start="date_start"
 date_stop="date_deadline"
 interval="month"
 string="Task Cohort" />
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

How it works...
To create a cohort view, you need to provide date_start and date_stop. These will
be used in the view to determine the time span of any record. For example, if you are
managing the subscription of a service, the start date of the subscription will be date_
start and the date when the subscription is going to expire will be date_stop.

By default, the cohort view will be displayed in retention mode by intervals of
a month. You can use the given options to get different behaviors in the cohort view:

• mode: You can use cohort with two modes, retention (default) or churn.
retention mode starts with 100% and decreases with time, while churn mode
starts at 0% and increases with time.

• timeline: This option accepts two values: forward (default) or backward.
In most cases, you need to use the forward timeline. But if date_start is in the
future, you will need to use the backward timeline. An example of when we would
use the backward timeline would be for the registration of an event attendee where
the event date is in the future and the registration date is in the past.

Defining the dashboard view 315

• interval: By default, the cohort is grouped by month, but you can change this in
the interval options. Other than months, cohort also supports day, week, and year
intervals.

• measure: Just like graph and pivot, measure is used to display the aggregated value
of a given field. If no option is given, cohort will display the count of records.

Defining the dashboard view
A new view called dashboard was introduced with Odoo version 12. This is used to
display multiple views and the various business KPIs in a single screen.

Getting ready
The dashboard view is part of the Odoo Enterprise edition, so you can't use it with
Community edition. If you are using the Enterprise edition, you need to add the
dependency of the web_dashboard in the manifest file of your module.

In our example, we will display a few KPIs and a few existing views. We will display the
graph and the pivot view in the same screen, so follow the Defining graph views recipe,
if you haven't created the pivot and graph views. We will use the ID of these views in
the dashboard view.

How to do it...
1. Define a dashboard view:

<record id="view_project_tasks_dashboard" model="ir.
ui.view">
 <field name="name">project task dashbaord</field>
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <dashboard>
 <view ref="my_project.view_project_tasks_
graph"
 type="graph" />
 <group>
 <aggregate name="all_task"
 string="Total Tasks"
 group_operator="count"
 field="id" measure="__count__"/>
 <aggregate name="progress_task"
 string="In Progress Tasks"

316 Backend Views

 domain="[('stage_id.name', 'ilike',
'In Progress')]"
 group_operator="count"
 field="id" measure="__count__"/>
 <aggregate name="done_task"
 string="Completed Tasks"
 domain="[('stage_id.name', 'ilike',
'Done')]"
 group_operator="count" field="id"
 measure="__count__"/>
 <formula name="price_average"
 string="Overall Progress"
 value="record.done_task / record.all_
task"
 widget="percentage"/>
 </group>
 <view ref="my_project.view_project_tasks_
pivot"
 type="pivot"/>
 </dashboard>
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

How it works...
With the dashboard view, you can display KPIs with aggregate and formula. You
can display multiple views on the same screen. If you look at the definition of the view,
you will see that we have added two views: graph at the beginning and pivot at the end.
To display the views, you just need to use the <view> tag with the XML reference and the
type of view.

We have displayed various KPIs, including the total tasks, the tasks in progress, and the
completed tasks, with the <aggregate> tag. This tag will display the aggregated result
for the records of the current domain in the search view. In the <aggregate> tag, you
can use the optional domain attribute to display aggregates for a particular set of records.
By default, the aggregate function displays the count of records, but you can provide
a SQL aggregate function using a group_operator attribute, such as avg or max.

Sometimes, it is not possible to display the KPI with <aggregate>; it needs some extra
computation. With the help of <formula>, you can define the formula for any KPI. In
our example, we have displayed the progress of all tasks and we have used the optional
widget attribute to display the value as a percentage.

Defining the gantt view 317

There's more....
Another useful element is the <widget> tag. With this, you can display data with the
UI of your choice. In Chapter15, Web Client Development, we will look at how to create
a custom widget.

Defining the gantt view
Odoo version 13 added a new gantt view with new options. The gantt view is useful
for seeing overall progress and scheduling business processes. In this recipe, we will create
a new gantt view and look at its options.

Getting ready
The gantt view is part of the Odoo Enterprise edition, so you can't use it with the
Community edition. If you are using the Enterprise edition, you need to add the web_
gantt dependency in the manifest file of your module.

In our example, we will continue using the my_project module from the previous
recipe. We will create a new gantt view for the tasks of the project.

How to do it...
1. Define a gantt view for the task model as follows:

<record id="view_project_tasks_gantt" model="ir.ui.view">
 <field name="name">project task gantt</field>
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <gantt date_start="date_assign" date_stop="date_
end"
 string="Tasks" default_group_by="project_
id"
 color="project_id" progress="sequence">
 <field name="name"/>
 <field name="stage_id"/>
 </gantt>
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

Install and update the module to apply the changes; after the update, you will see the
gantt view on the project tasks.

318 Backend Views

How it works...
With the gantt view, you can display an overall schedule on one screen. In our example,
we have created a gannt view for tasks grouped by project. Typically, you need two
attributes to create a gantt view, start_date and stop_date, but there are some
other attributes that extend the functionality of the gantt view. Let's see all the options:

• start_date: Defines the starting time of the gantt item. It must be a date or
date-time field.

• stop_date: Defines the starting time of the gantt item. It must be a date or date-
time field.

• default_group_by: Use this attribute if you want to group the gantt items
based on field.

• color: This attribute is used to decide the color of a gantt item.

• progress: This attribute is used to indicate the progress of a gantt item.

• decoration-* : Decoration attributes are used to decide the color of a gantt item
based on conditions. It can be used like this: decoration-danger="state ==
'lost'". Its other values are decoration-success, decoration-info,
decoration-warning, and decoration-secondary.

• scales: Use the scales attribute if you want to enable the gantt view only
for few scales. For example, if you only want day and week scales, you can use
scales="day,week".

• By default, gantt view items are resizable and draggable, but if you want to disable
that, you can use the edit="0" attribute.

There's more...
When you hover over a gantt view item, you will see the name and date for the item. If
you want to customize that popup, you can define a QWeb template in the gantt view
definition like this:

<gantt date_start="date_assign" date_stop="date_end"
string="Tasks">
 <field name="name"/>
 <field name="stage_id"/>
 <templates>
 <div t-name="gantt-popover">
 <ul class="pl-1 mb-0 list-unstyled">

 Name: <t t-esc="name"/>

Defining the activity view 319

 Stage: <t t-esc="stage_
id[1]"/>

 </div>
 </templates>
</gantt>

Note that you will need to add the fields that you want to use in the template via the
<field> tag.

Defining the activity view
Activities are an important part of Odoo apps. They are used to schedule to-do actions for
different business objects. The activity view helps you to see the statuses and schedules
of all activities on the model.

Getting ready
In our example, we will continue using the my_project module from the previous
recipe. We will create a new activity view for the tasks of the project.

How to do it...
1. Define a gantt view for the task model as follow:

<record id="view_project_tasks_activity" model="ir.
ui.view">
 <field name="name">project task activity</field>
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <activity string="Tasks">
 <templates>
 <div t-name="activity-box">
 <div>
 <field name="name" display="full"/>
 <field name="project_id"
 muted="1" display="full"/>
 </div>
 </div>
 </templates>

320 Backend Views

 </activity>
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

How it works...
The activity view is simplistic; most of the things are managed automatically. You just
have the option to customize the first column. To display your data in the first column,
you need to crate QWeb template with the name activity-box and that's it. Odoo will
manage the rest.

The activity view will display your template in the first column and other columns will
show the scheduled activities grouped by activity type.

Defining the map view
Odoo version 13 adds a new view called a map view. As its name suggests, it is used to
show a map with a marker. They are very useful for on-site services.

Getting ready
In our example, we will continue using the my_project module from the previous
recipe. We will create the new map view on for the customer of the task.
The map view is part of the Odoo Enterprise edition, so you can't use it with the
Community edition. If you are using the Enterprise edition, you need to add the web_
map dependency in the manifest file of your module.

Odoo uses the API from https://www.mapbox.com/ to display maps in the
view. In order to see the map in Odoo, you will need to generate the access token from
the mapbox. Make sure you have generated an access token and set it in the Odoo
configuration.

https://www.mapbox.com/

Defining the map view 321

How to do it…
1. Define a map view for the task model as follows:

<record id="view_project_tasks_map" model="ir.ui.view">
 <field name="name">project task map</field>
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <map res_partner="partner_id">
 <marker-popup>
 <field name="name" string="Title "/>
 <field name="partner_id" string="Customer
"/>
 </marker-popup>
 </map>
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

How it works...
Creating a map view is pretty simple: you just need a many2one field that refers to the
res.partner model. The res.partner model has address fields, which are used
by the map view to display the marker for the address. You will need to use the res_
partner attribute to map the address for the map view. In our case, we have used the
partner_id field as the customer record is set in the partner_id field.

Additionally, you can customize the fields that are displayed on the marker popup when
the user clicks on the marker. To display data in a marker popup, you will need to use the
<marker-popup> tag and place the fields inside it.

10
Security Access

In most cases, Odoo is used by multi-user organizations. In every organization, each user
has different roles, and they have different access based on their role. For example, the
HR manager does not have access to the company's accounting information. With access
rights and record rules, you can specify which information the user can access in Odoo.
In this chapter, we will learn how to specify access rights rules and record rules.

Such compartmentalization of access and security requires that we provide access to roles
as per their permission levels. We will learn about this in this chapter.

In this chapter, we will cover the following recipes:

• Creating security groups and assigning them to users

• Adding security access to models

• Limiting access to fields in models

• Limiting record access using record rules

• Using security groups to activate features

• Accessing recordsets as a superuser

• Hiding view elements and menus based on groups

In order to concisely get the point across, the recipes in this chapter make small additions
to an example existing module.

324 Security Access

Technical requirements
The technical requirements for this chapter include using the module that we created
by following the recipes in Chapter 3, Creating Odoo Add-On Modules. To follow the
examples here, you should have that module created and ready to use.

All the code that will be used in this chapter can be downloaded from this book's
GitHub repository at https://github.com/PacktPublishing/Odoo-14-
Development-Cookbook-Fourth-Edition/tree/master/Chapter10.

Creating security groups and assigning them
to users
Security access in Odoo is configured through security groups: permissions are given
to groups and then groups are assigned to users. Each functional area has base security
groups provided by a central application.

When add-on modules extend an existing application, they should add permissions to the
corresponding groups, as shown in the Adding security access to models recipe later.

When add-on modules add a new functional area not yet covered by an existing central
application, they should add the corresponding security groups. Usually, we should have at
least user and manager roles.

Taking the Library example we introduced in Chapter 3, Creating Odoo Add-On Modules,
it doesn't fit neatly into any of the Odoo core apps, so we will add security groups for it.

Getting ready
This recipe assumes that you have an Odoo instance ready with my_library available,
as described in Chapter 3, Creating Odoo Add-On Modules.

How to do it...
To add new access security groups to a module, perform the following steps:

1. Ensure that the __manifest__.py add-on module manifest has the category
key defined:

 'category': 'Library',

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter10

Creating security groups and assigning them to users 325

2. Add the new security/groups.xml file to the manifest data key:

 'data': [

 'security/groups.xml',

 'views/library_book.xml',

],

3. Add the new XML file for the data records to the security/library_
security.xml file, starting with an empty structure:

<?xml version="1.0" encoding="utf-8"?>

<odoo>

 <!-- Add step 4 goes here -->

</odoo>

4. Add the <record> tags for the two new groups inside the data XML element:

<record id="group_library_user" model="res.groups">
 <field name="name">User</field>
 <field name="category_id"
 ref="base.module_category_library"/>
 <field name="implied_ids"
 eval="[(4, ref('base.group_user'))]"/>
</record>

<record id="group_library_librarian" model="res.groups">
 <field name="name">Librarians</field>
 <field name="category_id"
 ref="base.module_category_library"/>
 <field name="implied_ids"
 eval="[(4, ref('group_library_user'))]"/>
 <field name="users" eval="[(4, ref('base.user_
admin'))]"/> </record>

326 Security Access

If we upgrade the add-on module, these two records will be loaded. To see these groups in
the UI, you need to activate developer mode. You'll then be able to see them through the
Settings | Users | Groups menu option, like so:

Figure 10.1 – Newly added security groups

Important Information
If you are adding a new model, the admin user doesn't get access rights for
that model. This means that the menus and views that have been added for
that model are not visible to the admin user. In order to display it, you need to
add access rules for that model, which we will do in the Adding security access
to models recipe. By the way, you can access newly added models through the
superuser; to learn more about this, please refer to the Accessing Odoo as
a superuser recipe in Chapter 3, Creating Odoo Add-On Modules.

How it works...
Add-on modules are organized into functional areas, or major applications, such as
Accounting and Finance, Sales, or Human Resources. These are defined by the category
key in the manifest file.

If a category name does not exist yet, it will be automatically created. For convenience,
a base.module_category_<category_name_in_manifest> XML ID will also
be generated for the new category name in lowercase letters, replacing the spaces with
underscores. This is useful for relating security groups to application categories.

Creating security groups and assigning them to users 327

In our example, we used the Library category name in the manifest, and it generated
a base.module_category_library XML identifier.

By convention, data files that contain security-related elements should be placed inside
a security subdirectory.

You also need to register security files in a manifest file. The order in which files are
declared in the data key of the module manifest is important, since you can't use a
reference of security groups in other views or ACL files before the group has been defined.
It's best to place the security data file at the top of the list before the ACL files and the
other user interface data files.

In our example, we created groups with the <record> tag, which will create a record
of the res.groups model. The most important columns of the res.group model are
as follows:

• name: This is the group's display name.

• category_id: This is a reference to the application category and is used to
organize the groups in the user's form.

• implied_ids: These are other groups to inherit permissions from.

• users: This is the list of users that belong to this group. In new add-on modules,
we usually want the admin user to belong to the application's manager group.

The first security group uses implied_ids as the base.group_user group. This
is the Employee user group and is the basic security group all the backend users are
expected to share.

The second security group sets a value on the users field to assign it to the administrator
user, which has the base.user_admin XML ID.

Users that belong to a security group will automatically belong to its implied groups. For
example, if you assign a Librarians group to any user, that user will also be included in the
User group. This is because the Librarians group has the User group in its implied_ids
column.

Also, access permissions granted by security groups are cumulative. A user has permission
if any of the groups they belong to (directly or implied) grant that permission.

Some security groups are shown in the user form as a selection box instead of individual
check boxes. This happens when the involved groups are in the same application category
and are linearly interrelated through implied_ids. For example, Group A has implied
Group B, and Group B has implied Group C. If a group is not related to any other groups
through implied_ids, instead of a selection box, you will see a checkbox.

328 Security Access

Note
Note that the relationships that were defined in the preceding fields also have
reverse relationships that can be edited in the related models, such as security
groups and users.

Setting values on reference fields, such as category_id and implied_ids, is done
using the related records' XML IDs and some special syntax. This syntax was explained in
detail in Chapter 6, Managing Module Data.

There's more...
The special base.group_no_one security group called Extra Rights is also
noteworthy. In previous Odoo versions, it was used for advanced features hidden by
default, and was only made visible when the Technical Features flag was activated.
From version 9.0, this has changed, and the features are visible as long as Developer
Mode is active.

Access permissions granted by security groups are cumulative only. There is no way to
deny access given by a group. This means that a manually created group used to customize
permissions should inherit from the closest group with fewer permissions than those
intended (if any), and then add all the remaining permissions needed.

Groups also have these additional fields available:

• Menus (the menu_access field): These are the menu items the group has access
to.

• Views (the view_access field): These are the UI views the group has access to.

• Access rights (the model_access field): This is the access it has to models, as
detailed in the Adding security access to models recipe.

• Rules (the rule_groups field): These are the record-level access rules that apply
to the group, as detailed in the Limiting record access using record rules recipe.

• Notes (the comment field): This is a description or commented piece of text for
the group.

In this recipe, we have learned to how create security groups and assign them from the
GUI. In the next few recipes, we will use these groups to create an access control list and
record rules.

Adding security access to models 329

See also
To learn how to access newly added models through the superuser, please refer to the
Accessing Odoo as a superuser recipe in Chapter 3, Creating Odoo Add-On Modules.

Adding security access to models
It's common for add-on modules to add new models. For example, in Chapter 3, Creating
Odoo Add-On Modules, we added a new Library Books model. It is easy to miss out on
creating security access for new models during development, and you might find it hard to
see menus and views that have been created. This is because, from Odoo version 12, admin
users don't get default access rights to new models. To see the views and menus for the
new model, you to need to add security access-control lists (ACLs).

However, models with no ACLs will trigger a warning log message upon loading,
informing the user about the missing ACL definitions:

WARNING The model library.book has no access rules, consider
adding one example, access_library_book, access_library_book,
model_library_book, base.group_user,1,0,0,0

You can also access newly added models through a superuser since this bypasses all
security rules. To learn more about this, please refer to the Accessing Odoo as a superuser
recipe in Chapter 3, Creating Odoo Add-On Modules. The superuser feature is only
available for administrator users. So, for new models to be usable by non-admin users, we
need to define their access control lists so that Odoo knows how it should access them, as
well as what operations each user group should be allowed to perform.

Getting ready
We will continue using the my_library module from the previous recipe and add the
missing ACLs to it.

330 Security Access

How to do it...
my_library should already contain the models/library_book.py Python file that
creates the library.book model. We will now add a data file that describes this model's
security access control by performing the following steps:

1. Edit the __manifest__.py file to declare a new data file:

 data: [

 # ...Security Groups

 'security/ir.model.access.csv',

 # ...Other data files

]

2. Add a new security/ir.model.access.csv file to the module with the
following lines:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink
acl_book,library.book_default,model_library_book,base_
group_user,1,0,0,0
acl_book_librarian,library.book_librarian,model_library_
book,group_library_librarian,1,1,1,1

We should then upgrade the module so that it these ACL records are added to our Odoo
database. More importantly, if we sign into a demonstration database using the demo user,
we should be able to access the Library menu option without receiving any
security errors.

How it works...
Security ACLs are stored in the core ir.model.access model. We just need to add the
records that describe the intended access rights for each user group.

Any type of data file would do, but the common practice is to use a CSV file. The file can
be placed anywhere inside the add-on module directory, but the convention is to have all
the security-related files inside a security subdirectory.

The first step in our recipe adds this new data file to the manifest. The second step adds
the files that describe the security access control rules. The CSV file must be named
after the model where the records will be loaded, so the name we've used is not just
a convention – it is mandatory. Please refer to Chapter 6, Managing Module Data,
for details.

Adding security access to models 331

If the module also creates new security groups, its data file should be declared in the
manifest before the ACLs' data files, since you may want to use them for the ACLs. They
must already be created when the ACL file is processed.

The columns in the CSV file are as follows:

• id: This is the XML ID internal identifier for this rule. Any unique name inside the
module will do, but the convention is to use access_<model>_<group>.

• name: This is a title for the access rule. It is a common practice to use a
access.<model>.<group> name.

• model_id:id: This is the XML ID for the model. Odoo automatically assigns this
kind of ID to models with a model_<name> format, using the model's _name with
underscores instead of dots. If the model was created in a different add-on module,
a fully qualified XML ID that includes the module name is needed.

• group_id:id: This is the XML ID for the user group. If left empty, it applies to all
users. The base module provides some basic groups, such as base.group_user
for all employees and base.group_system for the administration user. Other
apps can add their own user groups.

• perm_read: Members of the preceding group can read the model's records. It
accepts two values: 0 or 1. Use 0 to restrict read access on the model and 1 to
provide read access.

• perm_write: Members of the preceding group can update the model's records.
It accepts two values: 0 or 1. Use 0 to restrict write access on the model and 1 to
provide write access.

• perm_create: Members of the preceding group can add new records of this
model. It accepts two values: 0 or 1. Use 0 to restrict create access on the model and
1 to provide create access.

• perm_unlink: Members of the preceding group can delete records of this model.
It accepts two values: 0 or 1. Use 0 to restrict unlink access on the model and 1 to
provide unlink access.

The CSV file we used adds read-only access to the Employees | Employee standard
security group and full write access to the Administration | Settings group.

The Employee user group, base.group_user, is particularly important because the
user groups that are added by the Odoo standard apps inherit from it. This means that if
we need a new model to be accessible by all the backend users, regardless of the specific
apps they work with, we should add that permission to the Employee group.

332 Security Access

The resulting ACLs can be viewed from the GUI in debug mode by navigating to Settings
| Technical | Security | Access Controls List, as shown in the following screenshot:

Figure 10.2 – ACL list view

Some people find it easier to use this user interface to define ACLs and then use the export
feature to produce a CSV file.

There's more...
It would make sense for us to give this permission to the Library user and the Librarian
groups we defined in the Creating security groups and assigning them to users recipe. If you
followed that recipe, then it's a good exercise to follow this one while adapting the group
identifiers to the Library ones.

It's important to note that access lists provided by add-on modules should not be directly
customized, since they will be reloaded on the next module upgrade, destroying any
customization that could have been done from the GUI.

To customize ACLs, two approaches can be used. One is to create new security groups
that inherit from the one provided by the module and add additional permissions
on it, but this only allows us to add permissions, not remove them. A more flexible
approach would be to uncheck the Active flag on particular ACL lines to disable them.
The active field is not visible by default, so we need to edit the tree view to add the
<field name="active" /> column. We can also add new ACL lines for additional
or replacement permissions. On a module upgrade, the deactivated ACLs won't be
reactivated, and the added ACL lines won't be affected.

It's also worth noting that ACLs only apply to regular models and don't need to be defined
for Abstract or Transient models. If defined, these will be disregarded, and a warning
message will be triggered in the server log.

See also
You can also access newly added models through a superuser since this bypasses all
security rules. To learn more about this, please refer to the Accessing Odoo as a superuser
recipe in Chapter 3, Creating Odoo Add-On Modules.

Limiting access to fields in models 333

Limiting access to fields in models
In some cases, we may need more fine-grained access control, and we may also need to
limit access to specific fields in a model.

It is possible for a field to only be accessed by specific security groups, using the groups
attribute. In this recipe, we will show you how to add a field with limited access to the
Library Books model.

Getting ready
We will continue using the my_library module from the previous recipe.

How to do it...
To add a field with access that's limited to specific security groups, perform the
following steps:

1. Edit the model file to add the field:

is_public = fields.Boolean(groups='my_library.group_
library_librarian')
private_notes = fields.Text(groups='my_library.group_
library_librarian')

2. Edit the view in the XML file to add the field:

<field name="is_public" />
<field name="private_notes" />

That's it. Now, upgrade the add-on module for the changes in the model to take place. If
you sign in with a user with no system configuration access, such as demo in a database
with demonstration data, the Library Books form won't display the field.

How it works...
Fields with the groups attribute are specially handled to check whether the user
belongs to any of the security groups indicated in the attribute. If a user doesn't belong to
a particular group, Odoo will remove the field from the UI and restrict ORM operations
on that field.

Note that this security is not superficial. The field is not only hidden in the UI but is also
made unavailable to the user in the other ORM operations, such as read and write.
This is also true for XML-RPC or JSON-RPC calls.

334 Security Access

Be careful when using these fields in business logic or in on-change UI events
(@api.onchange methods); they can raise errors for users with no access to the field.
One workaround for this is to use privilege elevation, such as the sudo() model method
or the compute_sudo field attribute for computed fields.

The groups value is a string that contains a comma-separated list of valid XML IDs for
security groups. The simplest way to find the XML ID for a particular group is to activate
developer mode and navigate to the group's form, at Settings | Users | Groups, and
then access the View Metadata option from the debug menu, as shown in the following
screenshot:

Figure 10.3 – Menu for viewing a group's XML ID

You can also view the XML ID of a security group via code by using the <record> tag
that created the group. However, the most convenient way to find out a group's XML ID is
by looking at the metadata, as shown in the previous screenshot.

There's more...
In some cases, we need a field to be available or unavailable, depending on particular
conditions, such as the values in a field; for example, stage_id or state. This is usually
handled at the view level using attributes such as states or attrs to dynamically
display or hide the field according to certain conditions. Please refer to Chapter 9, Backend
Views, for a detailed description.

Limiting record access using record rules 335

Note that these techniques work at the user interface level only and don't provide actual
access security. To do this, you should add checks to the business logic layer. Either add
model methods decorated with @constrains, implementing the specific validations
intended, or extend the create, write, or unlink methods to add validation logic.
You can get further insights into how to do this by going back to Chapter 5, Basic Server-
Side Development.

See also
For more details on how to hide and display a field using conditions, please refer to
Chapter 9, Backend Views.

For further insights into the business logic layer, please refer to Chapter 5, Basic Server-
Side Development.

Limiting record access using record rules
A common need for any application is it to have the ability to limit which records are
available to each user on a specific model.

This is achieved using record rules. A record rule is a domain filter expression that's
defined on a model that will then be added to every data query that's made by the affected
users.

As an example, we will add a record rule to the Library Books model so that users in the
Employee group will only have access to public books.

Getting ready
We will continue using the my_library module from the previous recipe.

How to do it...
Record rules are added using a data XML file. To do this, perform the following steps:

1. Ensure that the security/security_rules.xml file is referenced by the
manifest data key:

 'data': [

 'security/security_rules.xml',

 # ...

],

336 Security Access

2. We should have a security/security_rules.xml data file with a <odoo>
section that creates the security group:

<odoo noupdate="1">
 <record model="ir.rule" id="library_book_user_rule">
 <field name="name">Library: see only own books</
field>
 <field name="model_id" ref="model_library_book"/>
 <field name="groups"
 eval="[(4, ref('my_library.group_library_
user'))]"/>
 <field name="domain_force">
 [('is_public', '=', True)]
 </field>
 </record>

 <record model="ir.rule" id="library_book_all_rule">
 <field name="name">Library: see all books</field>
 <field name="model_id" ref="model_library_book"/>
 <field name="groups"
 eval="[(4, ref('my_library.group_library_
librarian'))]"/>
 <field name="domain_force">[(1, '=', 1)]</field>
 </record>
</odoo>

Upgrading the add-on module will load the record rules inside the Odoo instance. If you
are using demo data, you can test it through the default demo user to give library user
rights to the demo user. If you are not using demo data, you can create a new user with
library user rights.

How it works...
Record rules are just data records that are loaded into the ir.rule core model. While
the file adding them can be anywhere in the module, the convention is for it to be in
the security subdirectory. It is common to have a single XML file with both security
groups and record rules.

Unlike groups, in the standard modules, the record rules are loaded into an odoo section
with the noupdate="1" attribute. With this, those records will not be reloaded on a
module upgrade, meaning that manually customizing them is safe and they will survive
later upgrades.

Limiting record access using record rules 337

To stay consistent with the official modules, we should also have our record rules inside
a <odoo noupdate="1"> section.

Record rules can be seen from the GUI via the Settings| Technical | Security | Record
Rules menu option, as shown in the following screenshot:

Figure 10.4 – ACLs for the book's model

The following are the most important record rule fields that were used in this example:

• Name (name): A descriptive title for the rule.

• Object (model_id): A reference to the model the rule applies to.

• Groups (groups): The security groups that the rule applies to. If no security group
is specified, the rule is considered global and is applied in a different way (continue
with this recipe to learn more about these groups).

• Domain (domain): A domain expression that is used to filter the records. The rule
is only going to applied to these filtered records.

The first record rule we created was for the Library User security group. It uses the
[('is_public', '=', True)] domain expression to select only the books that are
available publicly. Thus, users with the Library User security group will only be able to see
public books.

The domain expressions that are used in the record rules run on the server side using
ORM objects. Due to this, dot notation can be used on the fields on the left-hand side
(the first tuple element). For example, the [('country_id.code', '=', 'IN')]
domain expression will only show records that contain the country of India.

Since record rules are mostly based on the current user, you can use the user recordset
in the right-hand side (the third tuple element) of the domain. So, if you want to show the
records for the company of the current user, you can use the [('conpany_id', '=',
user.company_id.id)] domain. Alternatively, if you want to show the records that
are created by the current user, you can use the [('user_id', '=', user.id)]
domain.

338 Security Access

We want the Librarian security group to be able to see all the books, independent of
whether they are public or private. Since it inherits from the Library User group, unless we
do something about it, it will also be able to see only public books.

The non-global record rules are joined using the OR logical operator; each rule adds access
and never removes this access. For the Librarian security group to have access to all
the books, we must add a record rule to it so that it can add access for all books, as follows:

[('is_public', 'in', [True, False])]

We chose to do this differently here and use the [(1, '=', 1)] special rule instead
to unconditionally give access to all book records. While this may seem redundant,
remember that if we don't do this, the Library user rule can be customized in a way that
will keep some books out of reach from the Settings user. The domain is special because
the first element of a domain tuple must be a field name; this exact case is one of two cases
where that is not true. The special domain of [(1, '=', 0)] is never true, but also not
very useful in the case of record rules. This is because this type of rule is used to restrict
access to all the records. The same thing is also possible with access lists.

Important Information
Record rules are ignored if you've activated SUPERUSER mode. When testing
your record rules, ensure that you use another user for that.

There's more...
When a record rule is not assigned to any security group, it is marked as global and is
handled differently from the other rules.

Global record rules have a stronger effect than group-level record rules and set access
restrictions that those can't override. Technically, they are joined with an AND operator. In
standard modules, they are used to implement multi-company security access so that each
user can only see their company's data.

In summary, regular non-global record rules are joined with an OR operator; they are
added together, and a record is accessible if any of the rules grant that access. Global
record rules then add restrictions to the access given by regular record rules using an AND
operator. Restrictions that have been added by global record rules can't be overridden by
regular record rules.

Using security groups to activate features 339

Using security groups to activate features
Security groups can restrict some features so that they can only be accessed by users that
belong to these groups. Security groups can also inherit other groups, so they also grant
their permissions.

These two features are used to implement a usability feature in Odoo: feature toggling.
Security groups can also be used to enable or disable features for some or all the users in
an Odoo instance.

This recipe shows how to add options to configuration settings and showcases the two
methods you can use to enable additional features: making them visible using security
groups or adding them by installing an additional module.

For the first case, we will make the book-release dates an optional additional feature and
for the second, as an example, we will provide an option for installing the Notes module.

Getting ready
This recipe uses the my_library module, which was described in Chapter 3, Creating
Odoo Add-On Modules. We will need security groups to work with, so you also need to
have followed the Adding security access to models recipe in this chapter.

In this recipe, some identifiers need to refer to the add-on module's technical name. We
will assume that this is my_library. In case you are using a different name, replace my_
library with the actual technical name of your add-on module.

How to do it...
To add the configuration options, follow these steps:

1. To add the needed dependency and the new XML data files, edit the __
manifest__.py file like this and check that it depends on base_setup:

{ 'name': 'Cookbook code',

 'category': 'Library',

 'depends': ['base_setup'],

 'data': [

 'security/ir.model.access.csv',

 'security/groups.xml',

 'views/library_book.xml',

 'views/res_config_settings.xml',

340 Security Access

],

}

2. To add the new security group that's used for feature activation, edit the
security/groups.xml file and add the following record to it:

 <record id="group_release_dates" model="res.groups">

 <field name="name">Library: release date
feature</field>

 <field name="category_id" ref="base.module_
category_hidden" />

 </record>

3. To make the book-release date visible only when this option is enabled, edit the field
definition in the models/library_book.py file:

class LibraryBook(models.Model):

 # ...

 date_release = fields.Date(

 'Release Date',

 groups='my_library.group_release_dates',
)

4. Edit the models/__init__.py file in order to add a new Python file for the
configuration settings model:

from . import library_book

from . import res_config_settings

5. To extend the core configuration wizard by adding new options to it, add the
models/res_config_settings.py file with the following code:

from odoo import models, fields

class ConfigSettings(models.TransientModel):

 _inherit = 'res.config.settings'

 group_release_dates = fields.Boolean(

 "Manage book release dates",

 group='base.group_user',

 implied_group='my_library.group_release_
dates',

Using security groups to activate features 341

)

 module_note = fields.Boolean("Install Notes app")

6. To make the options available in the UI, add views/res_config_settings.
xml, which extends the settings form view:

<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <record id="view_general_config_library" model="ir.
ui.view">
 <field name="name">Configuration: add Library
options</field>
 <field name="model">res.config.settings</field>
 <field name="inherit_id" ref="base_setup.res_
config_settings_view_form" />
 <field name="arch" type="xml">
 <div id="business_documents"
position="before">
 <h2>Library</h2>
 <div class="row mt16 o_settings_
container">
 <!-- Add Step 7 and 8 goes here -->
 </div>
 </div>
 </field>
 </record>
</odoo>

7. In the settings form view, add the option to add a release date feature:

 <!-- Release Dates option -->

<div class="col-12 col-lg-6 o_setting_box">

 <div class="o_setting_left_pane">

 <field name="group_release_dates" class="oe_
inline"/>

 </div>

 <div class="o_setting_right_pane">

 <label for="group_release_dates"/>

 <div class="text-muted">

 Enable relase date feature on books

 </div>

342 Security Access

 </div>

</div>

8. In the settings form view, add the option to install the note module:

<!-- Note module option -->

<div class="col-12 col-lg-6 o_setting_box">

 <div class="o_setting_left_pane">

 <field name="module_note" class="oe_inline"/>

 </div>

 <div class="o_setting_right_pane">

 <label for="module_note"/>

 <div class="text-muted">

 Install note module

 </div>

 </div>

</div>

After upgrading the add-on module, the two new configuration options should be
available at Settings | General Settings. The screen should look like this:

Figure 10.5 – Library config in general settings

Using security groups to activate features 343

As shown in the preceding screenshot, you will have new settings in the Library section.
The first option, Manage book release dates, will enable the release date feature for the
books record. The second option, Install Notes app, will install Odoo's Notes app.

How it works...
The core base module provides the res.config.settings model, which provides
the business logic behind the activation option. The base_setup add-on module uses
the res.config.settings model to provide several basic configuration options that
can be made available inside a new database. It also makes the Settings | General Settings
menu available.

The base_setup module adapts res.config.settings to a central management
dashboard, so we need to extend it to add our own configuration settings.

If we decide to create a specific settings form for the Library app, we can still inherit from
the res.config.settings model with a different _name, and then for the new
model, provide the menu option and form view for just those settings. We already saw this
method in the Adding your own settings options recipe of Chapter 8, Advanced Server-Side
Development Techniques.

We used two different methods to activate these features: one by enabling a security group
and making the feature visible to the user, and the other by installing an add-on module
that provides this feature. The logic that's used to handle both these cases is provided by
the base res.config.settings model.

The first step in this recipe adds the base_setup add-on module to the dependencies,
since it provides extensions to the res.config.settings model we want to use. It
also adds an additional XML data file that we will need to add the new options to the
General Settings form.

In the second step, we created a new security group, Library: release date feature. The
feature that needs to be activated should only be visible to that group, so it will be hidden
until the group is enabled.

In our example, we want the book release date to only be available when the
corresponding configuration option is enabled. To achieve this, we can use the groups
attribute on the field so that it is made available only for this security group. We did this
at the model level so that it is automatically applied to all the UI views where the field
is used.

Finally, we extended the res.config.settings model to add the new options. Each
option is a Boolean field, and its name must begin either with group_ or module_,
according to what we want it to do.

344 Security Access

The group_ option field should have an implied_group attribute and should be
a string that contains a comma-separated list of XML IDs for the security groups to
activate when it is enabled. The XML IDs must be complete, with the module name,
dot, and identifier name provided; for example, module_name.identifier.

We can also provide a group attribute to specify which security groups the feature will be
enabled for. It will be enabled for all the Employee-based groups if no groups are defined.
Thus, the related groups won't apply to portal security groups, since these don't inherit
from the Employee base security group like the other regular security groups do.

The mechanism behind the activation is quite simple: it adds the security group in the
group attribute to implied_group, thus making the related feature visible to the
corresponding users.

The module_ option field does not require any additional attributes. The remaining part
of the field name identifies the module to be installed when this option has been activated.
In our example, module_note will install the note module.

Important Information
Unchecking the box will uninstall the module without warning, which
can cause data loss (models or fields and module data will be removed as
a consequence). To avoid unchecking the box by accident, the secure_
uninstall community module (from https://github.com/OCA/
server-tools) prompts the user for a password before they uninstall the
add-on module.

The last step of this recipe is added to the General Settings form view, just before the
Business documents group, which has id="business_documents". We used this
id for view inheritance. It creates its own div with the module name as the ID, which is
good practice because then, other modules that extend my_library can easily add their
own configuration items to this div.

There's more...
Configuration settings can also have fields named with the default_ prefix. When one
of these has a value, the ORM will set it as a global default. The settings field should
have a default_model attribute to identify the model that's been affected, and the
field name after the default_ prefix identifies the model field that will have the default
value set.

https://github.com/OCA/server-tools
https://github.com/OCA/server-tools

Accessing recordsets as a superuser 345

Additionally, fields with none of the three prefixes mentioned can be used for other
settings, but you will need to implement the logic to populate their values, using the get_
default_ name prefixed methods, and have them act when their values are edited using
the set_ name prefixed methods.

For those who would like to go deeper into the details of the configuration settings, take
a look at Odoo's source code in ./odoo/addons/base/models/res_config.py,
which is extensively commented on.

Accessing recordsets as a superuser
In the previous recipes, we looked at security techniques such as access rules, security
groups, and record rules. With these techniques, you can avoid unauthorized access.
Sometimes, however, you have complex business cases in which you want to access or
modify records, even if the user doesn't have access to them. For example, let's say the
public user doesn't have access to the leads records, but by submitting the website form,
the user can generate leads records in the backend.

Using sudo(), you can access recordsets as a superuser. We already saw sudo() in
the Changing the user that performs an action recipe of Chapter 8, Advanced Server-Side
Development Techniques. Here, we will see that even if you have given ACL rules or have
added a security group to the field, you can still get access through sudo().

How to do it...
We will use the same my_library module from the previous recipe. We already have
an ALC rule that gives read-only access to normal users. We will add a new field with
security groups so that only the Librarian has access to it. After that, we will modify the
field value for the normal user. Follow these steps to achieve this:

1. Add the new field to the library.book model:

 report_missing = fields.Text(
 string="Book is missing",
 groups='my_library.group_library_librarian')

2. Add the field to the form view:

<field name="report_missing"/>

3. Add the report_missing_book() method to the library.book model:

 def report_missing_book(self):
 self.ensure_one()

346 Security Access

 message = "Book is missing (Reported by: %s)" %
self.env.user.name
 self.sudo().write({
 'report_missing': message
 })

4. Add the button to the form view so that we can trigger our method from the user
interface. This should be placed inside the <header> tag:

<button name="report_missing_book"
 string="Report Missing Book"
 type="object"/>

Restart the server and update the module to apply these changes.

How it works...
In steps 1 and 2, we added a new field called report_missing to the model and form
view. Note that we put the my_library.group_library_librarian group on the
field in Python, so this field can only be accessed by the Librarian user.

In the next step, we added the report_missing_book() method. We updated the
value of the report_missing field inside this method's body. Note that we used
sudo() before calling the write method.

Finally, we added a button in the form view to trigger the method from the user interface.

To test this implementation, you need to log in with the non-librarian user. If you have
loaded the database with demonstration data, you can log in with the demo user and then
click on the Missing book report button in the form view of the book. Upon clicking that
button, the report_missing_book() method will be called, and this will write the
message into the report_missing field, even if the user doesn't have proper rights. You
can check the value of the field through the admin user because this field will be hidden
from the demo user.

Upon clicking the Report Missing Book button, we will get the recordset of the current
book in the report_missing_book() method as an argument, self. Before we
wrote the values into the book recordset, we used self.sudo(). This returns the same
recordset but with super user rights. This recordset will have the su=True environment
attribute, and it will bypass all access rules and record rules. Because of that, the
non-librarian user will be able to write in the book record.

Hiding view elements and menus based on groups 347

There's more...
You need to be extra careful when you use sudo() because it bypasses all access rights. If
you want to access the record set as another user, you can pass the ID of that user inside
sudo; for example, self.sudo(uid). This will return a recordset containing the
environment of that user. This way, it will not bypass all the access rules and record rules,
but you can perform all the actions that are allowed for that user.

Hiding view elements and menus based on
groups
In the previous recipes, we've learned how to hide fields from some users with group
arguments in the Python field definition. There is another way to hide fields in the user
interface: by adding security groups to the XML tags in the view definition. You can also
use security groups with menus to hide them from a particular user.

Getting ready
For this recipe, we will reuse the my_library add-on module from the previous recipe.
In the previous recipe, we added a button to the <header> tag. We will hide that whole
header from a few users by adding a groups attribute to it.

Add the model, the views, and the menus for the book.category model. We will hide
the category menus from a user. Please refer to Chapter 4, Application Models, to learn
how to add model views and menus.

How to do it...
Follow these steps to hide elements based in security groups:

1. Add a groups attribute to the <header> tag to hide it from other users:

...
<header groups="my_library.group_library_user">
...

348 Security Access

2. Add the groups attribute to the <menuitem> book category so that it's only
displayed for librarian users:

 <menuitem name="Book Categories"
 id="library_book_category_menu"
 parent="library_base_menu"
 action="library_book_category_action"
 groups="my_library.group_library_librarian"/>

Restart the server and update the module to apply these changes.

How it works...
In the first step, we added groups="my_library.group_library_user" to the
<header> tag. This means that the whole header part will only be visible to library users
and librarians. Normal backend users who don't have group_library_user will not
see the header part.

In step 2, we added the groups="my_library.group_library_librarian"
attribute to menuitem. This means that this menu is only visible to librarian users.

You can use the groups attribute almost everywhere, including <field>, <notebook>,
<group>, and <menuitems>, or on any tag from the view architecture. Odoo will hide
those elements if the user doesn't have that group. You can use the same group attributes
in web pages and QWeb reports, which will be covered in Chapter 12, Automation,
Workflows, Emails, and Printing, and Chapter 14, CMS Website Development.

As we saw in the Accessing recordsets as a superuser recipe of this chapter, we can hide
fields from some users using the groups argument in the Python field definition. Note
that there is a big difference between using security groups on fields and using Python
security groups in views. Security groups in Python provide real security; unauthorized
users can't even access the fields through ORM or through RPC calls. However, the groups
in views are just for improving usability. Fields that are hidden through groups in the
XML file can still be accessed through RPC or ORM.

See also
Please refer to Chapter 4, Application Models, to learn how to add model views and menus.

11
Internationalization

Odoo supports multiple languages and allows different users to use different languages
according to what they're most comfortable with. This is done through the built-in i18n
features of Odoo. With string translations, Odoo also supports number format of date and
time formatting too.

In this chapter, you will learn how you can enable multiple languages in Odoo and how
to add translation files in your custom modules. This will improve the user experience of
Odoo when understanding these new features.

In this chapter, we will cover the following recipes:

• Installing a language and configuring user preferences

• Configuring language-related settings

• Translating texts through a web client user interface

• Exporting translation strings to a file

• Using gettext tools to make translations easier

• Importing translation files into Odoo

• Changing the custom language URL code for a website

Many of these actions can be done either from the web client user interface or from the
command line. Wherever possible, we will see how to use both of these options.

350 Internationalization

Installing a language and configuring user
preferences
Odoo is localization-ready, meaning that it supports several languages and locale settings,
such as date and number formats.

When first installed, only the default English language is available. To have other
languages and locales available to users, we need to install them. In this recipe, we will see
how to set user preferences and how they are applied.

How to do it...
Activate developer mode and follow these steps to install a new language in an Odoo
instance:

1. Go to Settings | General Settings | Language. Here you will see the Add Language
link, as shown in the following screenshot. Click on that link and it will open
a dialog box to load languages:

Figure 11.1 – Language options in the general settings

2. Select the language you want to load:

Figure 11.2 – Dialog to load a language

Installing a language and configuring user preferences 351

3. Clicking on Add will load the selected language, and the confirmation dialog box
will open, shown as follows:

Figure 11.3 – Dialog that shows a language is loaded

4. New languages can also be installed from the command line. The equivalent
command for the preceding steps is as follows:

$./odoo-bin -d mydb --load-language=es_ES

5. To set the language used by a user, go to Settings | Users & Companies | Users, and,
in the Preferences tab of the User form, set the Language field value:

Figure 11.4 – User's form to set the language

Users can also set these configurations themselves through the Preferences menu option.
This is available when they click on the username at the top-right of the web client
window.

352 Internationalization

How it works...
Users can have their own language and time zone preferences. The language settings are
used to translate user interface text into the chosen language and apply local conventions
for float and monetary fields.

Before a language is made available for the user to select, it must be installed with the
Add language option. The list of available languages can be seen with the Settings |
Translations | Languages menu option in developer mode. The ones with the active flag
set are installed.

Each Odoo add-on module is responsible for providing its own translation resources,
which should be placed inside an i18n subdirectory. Each language's data should be in a
.po file. In our example, for the Spanish language, the translation data is loaded from the
es_ES.po data file.

Odoo also supports the notion of a base language. For example, if we have an es.po file
for Spanish and an es_MX.po file for Mexican Spanish, then es.po is detected as the
base language for es_MX.po. When the Mexican Spanish language is installed, both data
files are loaded; first the one for the base language and then the specific language. Thus,
the specific language translation file only needs to contain the strings that are specific to
the language variant, which is Mexican Spanish in our example.

The i18n subdirectory is also expected to have a <module_name>.pot file, providing
a template for translations and containing all the translatable strings. The Exporting
translation strings to a file recipe of this chapter explains how to export the translatable
strings to generate this file.

When an additional language is installed, the corresponding resources are loaded from
all installed add-on modules and stored in the Translated Terms model. Its data can be
viewed (and edited) within the Settings | Translations | Application Terms | Translated
Terms menu option (note that this menu is only visible in developer mode).

Translation files for the installed languages are also loaded when a new add-on module is
installed or an existing add-on module is upgraded.

There's more...
Translation files can be reloaded without upgrading the add-on modules by clicking again
on the refresh icon on the languages. This can be used if you have updated translation
files and don't want to go through the trouble of upgrading the modules (and all their
dependencies).

Configuring language-related settings 353

If the Overwrite Existing Terms checkbox is left empty, only the newly translated strings
are loaded. Thus, the changed translated strings won't be loaded. Check the box if you
want the already-existing translations to also be loaded and overwrite the currently
loaded translations. Note that this can potentially be problematic if someone changes the
translations manually through the interface.

The Overwrite Existing Terms checkbox exists because we can edit specific translations
by going to the Settings | Translations | Application Terms | Translated Terms menu
item, or by using the Technical Translation shortcut option in the Debug menu.
Translations that are added or modified in this way won't be overwritten unless the
language is reloaded with the Overwrite Existing Terms checkbox enabled.

It can be useful to know that add-on modules can also have an i18n_extra
subdirectory with extra translations. First, the .po files in the i18n subdirectory are
downloaded. Then, Odoo ORM downloads files for the base language and, after that, for
the language variant. Following this, the .po files in the i18n_extra subdirectory are
downloaded, first for the base language and then for the language variant. The last string
translation that's loaded is the one that prevails.

Configuring language-related settings
Languages and their variations (such as es_MX for Mexican Spanish) also provide locale
settings, such as date and number formats.

They come with appropriate defaults, so as long as the user is using the correct language,
the locale settings should be the correct ones.

However, you might still want to modify a language's settings. For example, you might
prefer to have the user interface in the default English but want to change the American
default date and number formats to match your requirements.

Getting ready
We will need to have developer mode activated. If it's not already activated, activate it as
shown in the Activating the Odoo developer tools recipe from Chapter 1, Installing the Odoo
Development Environment.

354 Internationalization

How to do it...
To modify a language's locale settings, follow these steps:

1. To check the installed languages and their configurations, select the Settings |
Translations | Languages menu option. Clicking on one of the installed languages
will open a form with the corresponding settings:

Figure 11.5 – Form to configure language settings

2. Edit the language settings. To change the date to the ISO format, change the
Date Format to %Y-%m-%d. To change the number format to use a comma as
a decimal separator, modify the Decimal Separator and Thousands Separator
fields accordingly.

How it works...
When signing in and creating a new Odoo user session, the user language is checked
in the user preferences and set in the lang context key. This is then used to format the
output appropriately—the source texts are translated into the user language, and the dates
and numbers are formatted according to the language's current locale settings.

Translating texts through the web client user interface 355

There's more...
Server-side processes are able to modify the context in which actions are run. For
example, to get a recordset where the dates are formatted according to the American
English format, independent of the current user's language preference, you can do the
following:

en_records = self.with_context(lang='en_US').search([])

For more details, refer to the Calling a method with a modified context recipe from Chapter
8, Advanced Server-Side Development Techniques.

Translating texts through the web client user
interface
The simplest way to translate is to use the translation feature provided by the web client.
These translation strings are stored in the database and can later be exported to a .po file,
either to be included in an add-on module or just to later be imported back manually.

Text fields can have translatable content, meaning that their value will depend on the
current user's language. We will also see how to set the language-dependent values on
these fields.

Getting ready
We will need to have developer mode activated. If it's not, activate it as shown in the
Activating the Odoo developer tools recipe in Chapter 1, Installing the Odoo Development
Environment.

How to do it...
We will demonstrate how to translate terms through the web client using the User Groups
feature as an example:

1. Navigate to the screen you want to translate. As an example, we will open the
Groups view via the Settings | Users & Companies | Groups menu item.

356 Internationalization

2. In the top menu bar, click on the Debug menu icon and select the Technical
Translation option:

Figure 11.6 – Option to open translation for the current view

3. A list of the available translation terms for that view will be shown. Edit Translation
Value in a line to change (or add) its translation text. If you are looking for
a particular source string, use the listed filters to narrow down the displayed text:

Figure 11.7 – Translation terms for the view

Translating texts through the web client user interface 357

Group Name is a translatable field. Let's translate a record's value to the several
languages installed.

4. Navigate to the User Groups menu option once more, open one of the group
records in the form view, and click on Edit:

Figure 11.8 – Translation for the field values

5. Note that the Name field has a special icon on the far right. This indicates that it
is a translatable field. Clicking on the icon opens a Translate list with the different
installed languages. This allows us to set the translation for each of those languages.

How it works...
Translated terms are stored in the database table for the ir.translation model. The
Technical Translation option in the Debug menu provides quick access to those terms, in
context with the currently selected view.

Similarly, model fields with translatable content will feature an icon to access a list of the
installed languages and to set the appropriate value for each language.

Alternatively, the translation terms can be accessed from the Settings top menu using the
Translations | Application Terms | Translated Terms menu option. Here, we can see all
the terms that are available for our instance. We should use data filters to locate the terms
we might be interested in.

358 Internationalization

There's more...
Alongside the Translated Terms menu option, we can also find the Generate Missing
Terms option. Selecting this will display a dialog window to provide the desired
language, and then launch a process to extract translatable strings from the installed
add-on modules and add any new ones to the Translated Terms table. It is equivalent to
performing the Export Translation steps, as described in the Exporting translation strings
to a file recipe of this chapter.

This can be useful after changing some models or views. By doing this, the new strings
will be added so that we can translate them.

It can also be used to populate the strings from the en_US default language. We can then
make use of the translation terms to replace the original English text with new text that is
better for the end user's specific business vocabulary.

Important note
When editing a QWeb view in a language other than the main website
language, you'll notice that you can only change strings. This is because, for
other languages, you actually only add translations to the text content of nodes
using Odoo's i18n mechanism.

Exporting translation strings to a file
Translation strings can be exported with or without the translated texts for a selected
language. This can either be to include i18n data in a module or to later perform
translations with a text editor or perhaps with a specialized tool.

We will demonstrate how to do this using the standard mail module, so feel free to
replace mail with your own module.

Getting ready
We will need to have developer mode activated. If it's not already activated, activate it as
demonstrated in the Activating the Odoo developer tools recipe in Chapter 1, Installing the
Odoo Development Environment.

Exporting translation strings to a file 359

How to do it...
To export the translation terms for the mail add-on module, follow these steps:

1. In the web client user interface, from the Settings top menu, select the Translations
| Import/Export | Export Translation menu option.

2. In the Export Translations dialog box, choose the language translation to export,
the file format, and the modules to export. To export a translation template file,
select New Language (Empty translation template) from the Language selection
list. It's recommended to use the .po format and to export only one add-on module
at a time—the Discuss module (mail is the technical name for the Discuss app), in
our example:

Figure 11.9 – Dialog to export translation terms

3. Once the export process is complete, a new window will be displayed, with a link to
download the file and some additional advice.

4. To export a translation template file for the mail add-on module from the Odoo
command-line interface, enter the following command:

$./odoo-bin -d mydb --i18n-export=mail.po --modules=mail

$ mv mail.po ./addons/mail/i18n/mail.pot

5. To export the translation template file for a language—es_ES for Spanish, for
example—from the Odoo command-line interface, enter the following command:

$./odoo-bin -d mydb --i18n-export=es_ES.po
--modules=mail
--language=es_ES

$ mv es_ES.po ./addons/mail/i18n

360 Internationalization

How it works...
The Export Translation feature does two things: extracts the translatable strings from
the target modules, adding the new ones in the ir.translation model, and then
creates a file with the translation terms. This can be done both from the web client and the
command-line interface.

When exporting from the web client, we can choose to either export an empty translation
template, that is, a file with the strings to translate along with empty translations, or export
a language, resulting in a file with the strings to translate, along with the translation for the
selected language.

The file formats that are available are CSV, PO, and TGZ. The TGZ file format exports
a compressed file that contains a <name>/i18n/ directory structure with the PO or
POT file.

The CSV format can be useful for performing translations using a spreadsheet, but the
format to use in the add-on modules is PO files. These are expected to be placed inside the
i18n subdirectory. They are then automatically loaded once the corresponding language
is installed. When exporting these PO files, we should export only one module at a time.
The PO file is also a popular format supported by translation tools, such as Poedit.

Translations can also be exported directly from the command line, using the --i18n-
export option. This recipe shows how to extract both the template files and the
translated language files.

In step 4 of this recipe, we exported a template file. The --i18n-export option expects
the path and the file name to export. Bear in mind that the file extension is required to be
either CSV, PO, or TGZ. This option requires the -d option, which specifies the database
to use. The --modules option is also needed to indicate the add-on modules to export.
Note that the --stop-after-init option is not needed, since the export command
automatically returns to the command line when finished.

This exports a template file. The Odoo module expects this exported template in the i18n
folder with the .pot extension. When working on a module, after the export operation,
we usually want to move the exported PO file to the module's i18n directory with
a <module>.pot name.

In step 5, the --language option was also used. With it, instead of an empty translation
file, the translated terms for the selected language were also exported. One use case
for this is to perform some translations through the web client user interface using the
Technical Translation feature, and then export and include them in the module.

Exporting translation strings to a file 361

There's more...
Text strings in view and model definitions are automatically extracted for translation. For
models, the _description attribute, the field names (the string attribute), help text,
and selection field options are extracted, as well as the user texts for model constraints
(_constraints and _sql_constraints).

Text strings to translate inside Python or JavaScript code can't be automatically detected,
so the code should identify those strings, wrapping them inside the underscore function.

In Python's module file, we should ensure that the file is imported with the following:

from odoo import _

This file can then be used wherever a translatable text is used with something like this:

_('Hello World')

For strings that use additional context information, we should use Python string
interpolation, as shown here:

_('Hello %s') % 'World'

Note that the interpolation should go outside the translation function. For example, _
("Hello %s" % 'World') is wrong. String interpolations should also be preferred to
string concatenation so that each interface text is just one translation string.

Be careful with the Selection fields! If you pass an explicit list of values to the field
definition, the displayed strings are automatically flagged for translation. On the other
hand, if you pass a method that returns the list of values, the display strings must be
explicitly marked for translation.

Regarding manual translation work, any text file editor will do, but using an editor that
specifically supports the PO file syntax makes the work easier by reducing the risk of
formatting errors. Such editors include those listed here:

• POEDIT: https://poedit.net/

• Emacs (PO-mode): https://www.gnu.org/software/gettext/manual/
html_node/PO-Mode.html

• Lokalize: http://i18n.kde.org/tools

• Gtranslator: https://wiki.gnome.org/Apps/Gtranslator

https://poedit.net/
https://www.gnu.org/software/gettext/manual/html_node/PO-Mode.html
https://www.gnu.org/software/gettext/manual/html_node/PO-Mode.html
http://i18n.kde.org/tools
https://wiki.gnome.org/Apps/Gtranslator

362 Internationalization

Using gettext tools to make translations
easier
The PO file format is part of the gettext i18n and localization system that's commonly
used in Unix-like systems. This system includes tools to ease
translation work.

This recipe demonstrates how to use these tools to help translate our add-on modules. We
want to use it on a custom module, so the my_library we created in Chapter 3, Creating
Odoo Add-On Modules, is a good candidate. However, feel free to replace it with some
other custom module you have at hand, replacing the recipe's my_library references as
appropriate.

How to do it...
To manage translations from the command line, assuming that your Odoo installation is
at ~/odoo-work/odoo, follow these steps:

1. Create a compendium of translation terms for the target language, for example,
Spanish. If we name our compendium file odoo_es.po, we should write the
following code:

$ cd ~/odoo-work/odoo # Use the path to your Odoo
installation

$ find ./ -name es_ES.po | xargs msgcat --use-first |
msgattrib
-- translated --no-fuzzy \ -o ./odoo_es.po

2. Export the translation template file for the add-on module from the Odoo
command-line interface and place it in the module's expected location:

$./odoo-bin -d mydb --i18n-export=my_module.po
--modules=my_module

$ mv my_module.po ./addons/my_module/i18n/my_module.pot

3. If no translation file is available yet for the target language, create the PO
translation file, reusing the terms that have been already found and translated in the
compendium:

$ msgmerge --compendium ./odoo_es.po -o
./addons/my_module/i18n/es_ES.po \
/dev/null ./addons/my_module/i18n/my_module.pot

Using gettext tools to make translations easier 363

4. If a translation file exists, add the translations that can be found in the compendium:

$ mv ./addons/my_module/i18n/es_ES.po /tmp/my_module_es_
old.po

$ msgmerge --compendium ./odoo_es.po -o./addons/my_
module/i18n/es_ES.po
\ /tmp/my_module_es_old.po ./addons/my_module/i18n/my_
module.pot
$ rm /tmp/my_module_es_old.po

5. To take a peek at the untranslated terms in a PO file, use this:

$ msgattrib --untranslated ./addons/my_module/i18n/es_
ES.po

6. Use your favorite editor to complete the translation.

How it works...
Step 1 uses commands from the gettext toolbox to create a translation compendium
for the chosen language—Spanish, in our case. It works by finding all the es_ES.po
files in the Odoo code base, and passing them to the msgcat command. We use the
--use-first flag to avoid conflicting translations (there are a few in the Odoo code
base). The result is passed to the msgattrib filter. We use the --translated option
to filter out the untranslated entries and the --no-fuzzy option to remove fuzzy
translations. We then save the result in odoo_es.po.

Step 2 of the preceding section calls odoo.py with the --i18n-export option.
You need to specify a database on the command line, even if one is specified in the
configuration file and the --modules option, with a comma-separated list of modules to
export the translation.

In the gettext world, fuzzy translations are those created automatically by the
msgmerge command (or other tools) using a proximity match on the source string. We
want to avoid these in the compendium.

Step 3 creates a new translation file by using existing translated values found in the
compendium. The msgmerge command is used with the --compendium option to find
the msgid lines in the compendium files, matching those in the translation template file
generated in step 2. The result is saved in the es_ES.po file.

If you have a preexisting .po file for your add-on with translations that you would like to
preserve, you should rename it and replace the /dev/null argument with this file. The
renaming procedure is required to avoid using the same file for input and output.

364 Internationalization

There's more...
This recipe only skims the surface of the rich tools that are available with the GNU
gettext toolbox. Full coverage is well beyond the scope of this book. If you are
interested, the GNU gettext documentation contains a wealth of precious information
about PO file manipulation and is available at http://www.gnu.org/software/
gettext/manual/gettext.html.

Importing translation files into Odoo
The usual practice to load translations is to place PO files inside the module's i18n
subdirectory. Whenever the add-on module is installed or upgraded, the translation files
are loaded and the newly translated strings are added.

However, there may be cases where we want to directly import a translation file. In this
recipe, we will see how to load a translation file, either from the web client or from the
command line.

Getting ready
We need to have developer mode activated. If it's not activated already, activate it as
demonstrated in the Activating the Odoo developer tools recipe from Chapter 1, Installing
the Odoo Development Environment. We will also need a translation po file, which we are
going import in this recipe, for example, the myfile.po file.

How to do it...
To import the translation terms, follow these steps:

1. In the web client user interface, from the Settings top menu, select the Translations
| Import/Export | Import Translation menu option.

2. In the Import Translations dialog box, fill out the language name and the language
code, and select the file to import. Finally, click on the Import button to perform
the action:

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html

Changing the custom language URL code for a website 365

Figure 11.10 – Dialog to import a translation file

3. To import a translation file from the Odoo command-line interface, we must place
it inside the server add-ons path and then perform the import:

$ mv myfile.po ./addons/

$./odoo.py -d mydb --i18n-import="myfile.po" --lang=es_
ES

How it works...
Import Translation takes a PO or CSV file and loads the translation strings into the
ir.translation table.

The web client feature asks for the language name, but this is not used in the import
process. It also has an overwrite option. If selected, it forces all the translation strings to be
imported, even the ones that already exist, overwriting them in the process.

On the command line, the import can be done using the --i18n-import option. It
must be provided with the path to the file, relative to an add-ons' path directory; -d and
--language (or -l) are mandatory. Overwriting can also be achieved by adding the
--i18n-overwrite option to the command. Note that we didn't use the --stop-
after-init option here. It is not needed, since the import action stops the server when
it finishes.

Changing the custom language URL code for
a website
Odoo supports multiple languages for websites too. On a website, the current language is
identified as a language string. In this recipe, you will see how to change the language code
in a URL.

366 Internationalization

Getting ready
Before following this recipe, make sure you have installed the website module and
enabled multiple languages for the website.

How to do it...
To modify a language's URL code, follow these steps:

1. Open the language list from the Settings | Translations | Languages menu option.
Clicking on one of the installed languages will open a form like this:

Figure 11.11 – Language URL code for a website

2. Here you will see the URL Code field. Set the value that you want. Make sure you
don't add spaces or special characters here.

After configuring this, you can test the results on your website. Open the home page and
change the language; you will see the custom language code in the URL.

Changing the custom language URL code for a website 367

How it works...
Odoo identifies the languages for a website via the URL path. For example, www.odoo.
com/fr_FR is used for the French language and www.odoo.com/es_ES is used for
the Spanish language. Here, the fr_FR and es_ES parts of the URL are the language
ISO codes, and they are used by Odoo to detect the requested language. But sometimes,
you want to set the language in a more user-friendly way. In that case, you can update the
URL Code field. Once you have changed that, the Odoo website will use the URL Code
value to identify the language. For example, you could set URL Code to fr for the French
language. Then, www.odoo.com/fr_FR would be converted into www.odoo.com/fr.

Note
It is no issue if you change the URL code in production; Odoo will redirect the
URL with the language ISO code to your custom URL.

http://www.odoo.com/fr_FR
http://www.odoo.com/fr_FR
http://www.odoo.com/es_ES
http://www.odoo.com/fr_FR
http://www.odoo.com/fr

12
Automation,

Workflows, Emails,
and Printing

Business applications are expected not only to store records but also to manage business
workflows. Some objects, such as leads or project tasks, have a lot of records that run in
parallel. Having too many records for an object makes it harder to have a clear picture of
the business. Odoo has several techniques that can deal with this problem. In this chapter,
we will look at how we can set a business workflow with dynamic stages and kanban
groups. This will help the user to get an idea about how their business is running.

We will also look at techniques, such as server actions and automated actions, that can be
used by power users or functional consultants to add simpler process automation without
the need to create custom add-ons. Finally, we will create QWeb-based PDF reports to
print out.

In this chapter, we will cover the following recipes:

• Managing dynamic record stages

• Managing kanban stages

• Adding a quick create form to a kanban card

370 Automation, Workflows, Emails, and Printing

• Creating interactive kanban cards

• Adding a progress bar in kanban views

• Creating server actions

• Using Python code server actions

• Using automated actions on time conditions

• Using automated actions on event conditions

• Creating QWeb-based PDF reports

• Managing activities from a kanban card

• Adding a stat button to a form view

• Enabling the archive option for records

Technical requirements
The technical requirement for this chapter is having an online Odoo platform.

All the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter12.

Managing dynamic record stages
In my_library, we have a state field to indicate the current status of a book rent
record. This state field is limited to the ongoing or returned statuses and it is
not possible to add a new state to the business process. To avoid this, we can use the
many2one field to give flexibility when designing the kanban workflow of a user's choice,
and you can add/remove a new state any time.

Getting ready
For this recipe, we will be using the my_library module from Chapter 8, Advanced
Server-Side Development Techniques. That module manages books and their categories.
It also records book rents. We added an initial module, Chapter12/00_initial_
module/my_library, to the GitHub repository for this book to help you get
started: https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter12.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter12

Managing dynamic record stages 371

How to do it...
Follow these simple steps to add stages to the library.book.rent module:

1. Add a new model called library.rent.stage, as follows:

class LibraryRentStage(models.Model):
 _name = 'library.rent.stage'
 _order = 'sequence,name'

 name = fields.Char()
 sequence = fields.Integer()
 fold = fields.Boolean()
 book_state = fields.Selection(
 [('available', 'Available'),
 ('borrowed', 'Borrowed'),
 ('lost', 'Lost')],
 'State', default="available")

2. Add access rights for this new module in the security/ir.model.access.
csv file, as follows:

acl_book_rent_stage,library.book_rent_stage_
default,model_library_rent_stage,,1,0,0,0
acl_book_rent_librarian_stage,library.book_rent_
stage_librarian,model_library_rent_stage,group_
librarian,1,1,1,1

3. Remove the state field from the library.book.rent model and replace it
with a new stage_id field, which is a many2one field, and its methods, as shown
in the following example:

@api.model
def _default_rent_stage(self):
 Stage = self.env['library.rent.stage']
 return Stage.search([], limit=1)

stage_id = fields.Many2one(
 'library.rent.stage',
 default=_default_rent_stage
)

372 Automation, Workflows, Emails, and Printing

4. Replace the state field in the form view with the stage_id field, as shown in the
following example:

<header>
 <field name="stage_id" widget="statusbar"
 options="{'clickable': '1', 'fold_field':
'fold'}"/>
</header>

5. Replace the state field in the tree view with the stage_id field, as follows:

<tree>
 <field name="book_id"/>
 <field name="borrower_id"/>
 <field name="stage_id"/>
</tree>

6. Add some initial stages from the data/library_stage.xml file. Don't forget to
add this file to the manifest, as shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<odoo noupdate="1">
 <record id="stage_draft" model="library.rent.stage">
 <field name="name">Draft</field>
 <field name="sequence">1</field>
 <field name="book_state">available</field>
 </record>
 <record id="stage_rent" model="library.rent.stage">
 <field name="name">On rent</field>
 <field name="sequence">5</field>
 <field name="book_state">borrowed</field>
 </record>
 <record id="stage_due" model="library.rent.stage">
 <field name="name">Due</field>
 <field name="sequence">15</field>
 <field name="book_state">borrowed</field>
 </record>
 <record id="stage_returned" model="library.rent.
stage">
 <field name="name">Completed</field>
 <field name="sequence">25</field>
 <field name="book_state">available</field>
 </record>
 <record id="stage_lost" model="library.rent.stage">
 <field name="name">Lost</field>

Managing dynamic record stages 373

 <field name="sequence">35</field>
 <field name="fold" eval="True"/>
 <field name="book_state">lost</field>
 </record>
</odoo>

After installing the module, you will see stages in the form view, as shown in the following
screenshot:

Figure 12.1 – Stage selector in the form view

As you can see in the preceding screenshot, you will see the stages on the book rent
record. These stages are clickable, so you will be able to change the stage by clicking on it.
Folded stages will be displayed under the More dropdown.

How it works...
As we want to manage the record stages dynamically, we need to create a new model.
In step 1, we created a new model called library.rent.stage to store the dynamic
stages. In this model, we added a few fields. One of these was the sequence field, which
is used to determine the order of the stages. We also added the fold Boolean field, which
is used to collapse the stages and put them in a drop-down list. This is very helpful when
your business process has lots of stages because it means that you can hide insignificant
stages in the drop-down menu by setting this field. We added a book_state field to map
the dynamic stage to the state of the book. We will use this field in the upcoming section.

The fold field is also used in kanban views to display folded kanban columns. Usually,
Work in Progress items are expected to be in the Unfolded stage, and terminated items
that are marked as either Done or Cancelled should be in the Folded stage.

By default, fold is the name of the field that is used to hold the value of the stage fold.
You can change this, however, by adding the _fold_name = 'is_fold' class
attribute.

374 Automation, Workflows, Emails, and Printing

In step 2, we added the basic access right rules for the new model.

In step 3, we added the stage_id many2one field to the library.book.rent
model. While creating a new loan record, we wanted to set the default stage value to
Draft. To accomplish this, we added a _default_rent_stage() method. This
method will fetch the record of the library.rent.stage model with the lowest
sequence number, so, while creating a new record, the stage with the lowest sequence will
be displayed as active in the form view.

In step 4, we added the stage_id field to the form view. By adding the clickable
option, we made the status bar clickable. We also added an option for the fold field,
which will allow us to display insignificant stages in the drop-down menu.

In step 5, we added stage_id to the tree view.

In step 6, we added the default data for the stages. Users will see these basic stages after
installing our module. If you want to learn more about XML data syntax, refer to the
Loading data using XML files recipe in Chapter 6, Managing Module Data.

Important note
With this implementation, the user can define new stages on the fly. You will
need to add views and menus for library.rent.stage so that you can
add new stages from the user interface. Refer to Chapter 9, Backend Views, if
you don't know how to add views and menus.

If you don't want to do this, the kanban view provides inbuilt features for
adding, removing, or modifying stages from the kanban view itself, which is
coming up in the next recipe.

There's more...
Notice that we have the state field in the library.book model. This field is used to
represent the status of the book, or, in other words, whether it is available or not. We have
added a book_state field to map the state of the book with the dynamic stages.

In order to reflect the book state from the stage, we need to override the create and write
methods in the library.book.rent model, as follows:

 @api.model
 def create(self, vals):
 rent = super(LibraryBookRent, self).create(vals)
 if rent.stage_id.book_state:
 rent.book_id.state = rent.stage_id.book_state
 return rent

Managing kanban stages 375

 @api.multi
 def write(self, vals):
 rent = super(LibraryBookRent, self).write(vals)
 if self.stage_id.book_state:
 self.book_id.state = self.stage_id.book_state
 return rent

After this, whenever the user changes the stage of any rent record, it will be reflected in
the book record.

See more
• Refer to Chapter 9, Backend Views, to learn about adding views and menus.

Managing kanban stages
Using a kanban board is a simple method to manage workflows. It is organized in
columns, each corresponding to stages, and the work items progress from left to right
until they are finished. A kanban view, with the stages, provides flexibility because it
allows users to choose their own workflows. It provides a full overview of the records on
a single screen.

Getting started
For this recipe, we will be using the my_library module from the previous recipe. We
will add kanban for the libary.book.rent model and we will group kanban cards
by stage.

How to do it...
Perform the following steps to enable workflows such as kanban for the book rent model:

1. Add a kanban view for libary.book.rent, as follows:

<record id="library_book_rent_view_kanban" model="ir.
ui.view">
 <field name="name">Rent Kanban</field>
 <field name="model">library.book.rent</field>
 <field name="arch" type="xml">
 <kanban default_group_by="stage_id">
 <field name="stage_id" />
 <templates>

376 Automation, Workflows, Emails, and Printing

 <t t-name="kanban-box">
 <div class="oe_kanban_global_click">
 <div class="oe_kanban_content">
 <div class="oe_kanban_card">
 <div>
 <i class="fa
fa-user"/>

 <field
name="borrower_id" />

 </div>
 <div class="text-muted">
 <i class="fa
fa-book"/>
 <field name="book_id"
/>
 </div>
 </div>
 </div>
 </div>
 </t>
 </templates>
 </kanban>
 </field>
</record>

2. Add kanban to the library_book_rent_action action, as follows:

...
<field name="view_mode">kanban,tree,form</field>
...

3. Add the _group_expand_stages() method and the group_expand attribute
to the stage_id field, as follows:

@api.model
def _group_expand_stages(self, stages, domain, order):
 return stages.search([], order=order)

stage_id = fields.Many2one(
 'library.rent.stage',
 default=_default_rent_stage,
 group_expand='_group_expand_stages'
)

Managing kanban stages 377

Restart the server and update the module to apply the changes. This will enable a kanban
board, as shown in the following screenshot:

Figure 12.2 – Kanban view with groups by stage

As you can see in the preceding screenshot, the kanban will show the rent records grouped
by stage. You will be able to drag and drop cards to another stage column. Moving cards to
another column will change the stage value in the database too.

How it works...
In step 1, we added a kanban view for the library.book.rent model. Note that we
used stage_id as the default group for kanban, so, when the user opens kanban, the
kanban cards will be grouped by stage. To find out more about kanban, please refer to
Chapter 9, Backend Views.

In step 2, we added the kanban keyword to the existing action.

In step 3, we added the group_expand attribute to the stage_id field. We also added
a new _group_expand_stages() method. group_expand changes the behavior
of the field grouping. By default, field grouping shows the stages that are being used. For
example, if there is no rent record that has the lost stage, the grouping will not return
that stage, so kanban will not display the lost column. But in our case, we want to
display all of the stages, regardless of whether or not they are being used.

The _group_expand_stages() function is used to return all the records for the
stages. Because of this, the kanban view will display all the stages and you will be able to
use workflows by dragging and dropping them.

378 Automation, Workflows, Emails, and Printing

There's more...
If you play around with the kanban board created in this recipe, you will find lots of
different features. Some of these are as follows:

• You can create a new stage by clicking on the Add new column option. The
group_create option can be used to disable the Add column option from the
kanban board.

• You can arrange columns into a different order by dragging them by their headers.
This will update the sequence field of the library.rent.stage model.

• You can edit or delete columns with the gear icon in the header of a kanban column.
The group_edit and group_delete options can be used to disable this feature.

• The stages that have a true value in the fold field will collapse and the column
will be displayed like a slim bar. If you click on this slim bar, it will expand and
display the kanban cards.

• If the model has an active Boolean field, it will display the option to archive and
unarchive records in the kanban column. The archivable option can be used to
disable this feature.

• The plus icon on the kanban column can be used to create records directly from the
kanban view. The quick_create option can be used to disable this feature. For
the moment, this feature will not work in our example. This will be solved in the
next recipe.

See more
• To learn more about kanban, please refer to Chapter 9, Backend Views.

Adding a quick create form to a kanban card
Grouped kanban views provide the quick create feature, which allows us to generate
records directly from the kanban view. The plus icon on a column will display an editable
kanban card on the column, using which you can create a record. In this recipe, we will
see how we can design a quick create kanban form of our choice.

Getting started
For this recipe, we will be using the my_library module from the previous recipe. We
will use the quick create option in kanban for the library.book.rent model.

Adding a quick create form to a kanban card 379

How to do it...
Follow these steps to add a custom quick create form for kanban:

1. Create a new minimal form view for the library.book.rent model, as follows:

<record id="library_book_rent_view_form_minimal"
model="ir.ui.view">
 <field name="name">Library Rent Form</field>
 <field name="model">library.book.rent</field>
 <field name="arch" type="xml">
 <form>
 <group>
 <field name="book_id" domain="[('state',
'=', 'available')]"/>
 <field name="borrower_id"/>
 </group>
 </form>
 </field>
</record>

2. Add quick create options to the <kanban> tag, as follows:

<kanban default_group_by="stage_id"
 quick_create_view="my_library.library_book_rent_
view_form_minimal"
 on_create="quick_create">

3. Restart the server and update the module to apply the changes. Then, click on the
plus icon in the column. This will enable kanban forms, as shown in the following
screenshot:

Figure 12.3 – Quickly creating a record directly from the kanban view

380 Automation, Workflows, Emails, and Printing

When you click on the Create button in the Kanban view, you will see a small card with
input instead of redirecting to the form view. You can fill in the values and click on Add,
which will create a book rent record.

How it works...
In order to create a custom quick create option, we need to create a minimal form view.
We did this in step 1. We added two required fields, because you cannot create a record
without filling in the required fields. If you do so, Odoo will generate an error and open
the default form view in the dialog so that you can enter all the required values.

In step 2, we added this new form view to the kanban view. Using the quick_create_
view option, you can map the custom form view to the kanban view. We also added
one extra option – on_create="quick_create". This option will display a quick
create form in the first column when you click on the Create button in the control panel.
Without this option, the Create button will open a form view in editable mode.

You can disable the quick create feature by adding quick_create="false" to the
kanban tag.

Creating interactive kanban cards
Kanban cards support all HTML tags, which means you can design them however you
like. Odoo provides some built-in ways to make kanban cards more interactive.
In this recipe, we will add color options, the star widget, and many2many tags to the
kanban card.

Getting started
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
Follow these steps to create an attractive kanban card:

1. Add a new model to manage the tags for the library.book.rent model,
as follows:

class LibraryRentTags(models.Model):
 _name = 'library.rent.tag'

 name = fields.Char()
 color = fields.Integer()

Creating interactive kanban cards 381

2. Add basic access rights for the library.rent.tag model, as follows:

acl_book_rent_tags,library.book_rent_tags_default,model_
library_rent_tag,,1,0,0,0
acl_book_rent_librarian_tags,library.book_rent_tags_
librarian,model_library_rent_tag,group_librarian,1,1,1,1

3. Add new fields to the library.book.rent model, as follows:

 color = fields.Integer()
 popularity = fields.Selection([
 ('no', 'No Demand'),
 ('low', 'Low Demand'),
 ('medium', 'Average Demand'),
 ('high', 'High Demand')], default="no")
 tag_ids = fields.Many2many('library.rent.tag')

4. Add fields in the form view, as follows:

<field name="popularity" widget="priority"/>
<field name="tag_ids" widget="many2many_tags"
 options="{'color_field': 'color', 'no_create_edit':
True}"/>

In the next few steps, we will update an existing kanban view. The code in bold text
is newly added code.

5. Add a color field to the kanban view:

 ...
 <field name="stage_id" />
 <field name="color" />

 ...

6. Add a dropdown to choose a color on the kanban view:

...

<t t-name="kanban-box">

 <div t-attf-class="#{kanban_color(record.color.raw_
value)} oe_kanban_global_click">

 <div class="o_dropdown_kanban dropdown">

 <a class="dropdown-toggle o-no-caret btn"
role="button" data-toggle="dropdown">

382 Automation, Workflows, Emails, and Printing

 <div class="dropdown-menu" role="menu">

 <t t-if="widget.editable">

 <a role="menuitem" type="edit"
class="dropdown-item">Edit

 </t>

 <t t-if="widget.deletable">

 <a role="menuitem" type="delete"
class="dropdown-item">Delete

 </t>

 <ul class="oe_kanban_colorpicker" data-
field="color"/>

 </div>

 </div>

...

7. Add tags and a popularity field to the kanban view:

...

<div class="text-muted">

 <i class="fa fa-book"/>

 <field name="book_id" />

</div>

 <field name="tag_ids" widget="many2many_tags"
options="{'color_field': 'color'}"/>

<div>

 <field name="popularity" widget="priority"/>

</div>
...

Important note
The code in bold should be added to the existing kanban view.

Restart the server and update the module to apply the changes. Then, click on the
plus icon on a column. It will display the kanban, as shown in the following figure:

Creating interactive kanban cards 383

Figure 12.4 – Kanban cards with new options

Our changes in the kanban structure will enable extra options in the kanban card. Now
you will be able to choose the color on kanban itself. Also, you will be able to prioritize
cards with stars.

How it works...
In the first two steps, we added a new model and security rules for tags. In the third step,
we added a few fields to the rent model.

In step 4, we added those fields to the form view. Note that we used the priority widget
on the popularity field, which displays the selection field with star icons. In the tag_
ids field, we used the many2many_tags widget, which displays the many2many field
in the form of tags. The color_field option is passed to enable the color feature on
tags. The value of this option is the field name where the color index is stored. The no_
create_edit option will disable the feature of creating new tags via the form view.

In step 5, we improved lots of things. To the kanban card, we added t-attf-
class="#{kanban_color(record.color.raw_value)}. This will be used to
display the color of the kanban card. It uses the value of the color field and generates
a class based on that value. For example, if a kanban record has a value of 2 in the color
field, it will add kanban_color_2 to the class. After that, we added a drop-down menu
to add options such as Edit, Delete, and the kanban color picker. The Edit and Delete
options are only displayed if the user has proper access rights.

384 Automation, Workflows, Emails, and Printing

Finally, we added tags and priority to the kanban card. After adding all of this, the kanban
card will look as in the following screenshot:

Figure 12.5 – Kanban card options

With this card design, you will be able to set popularity stars and colors directly from the
kanban card.

Adding a progress bar in kanban views
Sometimes, you have tons of records in columns and it is very difficult to get a clear
picture of the particular stages. A progress bar can be used to display the status of any
column. In this recipe, we will display a progress bar on kanban, based on the field named
popularity.

Getting started
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
In order to add a progress bar to the kanban columns, you will need to add a
progressbar tag to the kanban view definition, as follows:

<progressbar
 field="popularity"
 colors='{"low": "success", "medium": "warning", "high":
"danger"}'/>

Note that kanban column progress bars were introduced in Odoo version 11. Versions
prior to that will not display column progress bars.

Adding a progress bar in kanban views 385

Restart the server and update the module to apply the changes. Then, click on the plus
icon on a column. This will display the progress bar on the kanban columns, as shown in
the following screenshot:

Figure 12.6 – Kanban view with a progress bar

Once you update the module, you have added a progress bar to the kanban columns. The
color of the progress bar shows the number of records based on the record state. You will
be able to click on one of the progress bars to filter records based on that state.

How it works...
Progress bars on kanban columns are displayed based on the values of the field. Progress
bars support four colors, so you cannot display more than four states. The available
colors are green (success), blue (information), red (danger), and yellow (warning). Then,
you need to map colors to the field states. In our example, we mapped three states of
the priority field because we didn't want any progress bars for the books that are not in
demand.

By default, progress bars show a count of the records on the side. You can see the total of
a particular state by clicking on it in the progress bar. Clicking on the progress bar will
also highlight the cards for that state. Instead of the count of records, you can also display
the sum of the integer or float field. To do this, you need to add the sum_field attribute
with the field value, such as sum_field="field_name".

386 Automation, Workflows, Emails, and Printing

Creating server actions
Server actions underpin Odoo's automation tools. They allow us to describe the actions to
perform. These actions are then available to be called by event triggers, or to be triggered
automatically when certain time conditions are met.

The simplest case is to let the end user perform an action on a document by selecting it
from the More button. We will create this kind of action for project tasks, to Set Priority
by starring the currently selected task and setting a deadline on it for 3 days from now.

Getting ready
We will need an Odoo instance with the Project app installed. We will also need
Developer Mode activated. If it's not already activated, activate it in the Odoo Settings
dashboard.

How to do it...
To create a server action and use it from the More menu, follow these steps:

1. On the Settings top menu, select the Technical | Actions | Server Actions menu
item, and click on the Create Contextual Action button at the top of the record list,
as shown in the following screenshot:

Figure 12.7 – Server action form view

Creating server actions 387

2. Fill out the server action form with these values:

Action Name: Set as Priority

Model: Task

Action To Do: Update the Record

3. In the server action, under the Data to Write tab, add the following:

• As the first value, we will enter the following parameters:

Field: Deadline

Evaluation Type: Python expression

Value: datetime.date.today() + datetime.timedelta(days=3)
• As the second value, we will enter the following parameters:

Field: Priority

Evaluation Type: Value

Value: 1
The following screenshot shows the entered values:

Figure 12.8 – Set lines to write

4. Save the server action and click on the Create Contextual Action button at the top
left to make it available under the project task's More button.

388 Automation, Workflows, Emails, and Printing

5. To try it out, go to the Project top menu, select the Search | Tasks menu item, and
open a random task. By clicking on the More button, we should see the Set Priority
option, as shown in the following screenshot. Selecting this will star the task and
change the deadline date to three days from now:

Figure 12.9 – Set Priority server action

Once you add the server action, you will have set the priority option on the task. Upon
clicking on it, the server action star will turn yellow, meaning the priority of the task has
increased. Also, the server action will change the deadline.

How it works...
Server actions work on a model, so one of the first things to do is to pick the model we
want to work with. In our example, we used project tasks.

Next, we should select the type of action to perform. There are a few options available:

• Execute Python Code allows you to write arbitrary code to execute when none of
the other options are flexible enough for what we need.

• Create a new Record allows you to create a new record to the current model or on
another model.

• Update the Record allows you to set values on the current record or on another
record.

• Send Email allows you to choose an email template. This will be used to send out an
email when the action is triggered.

• Execute several actions can be used to trigger a client or window action, just like
when a menu item is clicked on.

• Add Followers allows users or channels to subscribe to the record.

Creating server actions 389

• Create Next Activity allows you to create a new activity. This will be displayed in
the chatter.

• Send SMS Text Message allows you to send an SMS. You need to select the SMS
template.

Note
Send SMS Text Message is a chargeable service from Odoo. You need to
purchase credit for SMS if you want to send an SMS.

For our example, we used Update the Record to set some values on the current record.
We set Priority to 1 to star the task, and set a value on the Deadline field. This one is
more interesting, because the value to use is evaluated from a Python expression. Our
example makes use of the datetime Python module (https://docs.python.
org/2/library/datetime.html) to compute the date three days from today.

Arbitrary Python expressions can be used there, as well as in several of the other action
types available. For security reasons, the code is checked by the safe_eval function
implemented in the odoo/tools/safe_eval.py file. This means that some Python
operations may not be allowed, but this rarely proves to be a problem.

When you add a drop-down option to the server action, usually it is available for all
internal users. But if you just want to show this option to selected users, you can assign
a group to the server action. This is available under the Security tab in the server action
form view.

There's more...
The Python code is evaluated in a restricted context, where the following objects are
available to use:

• env: This is a reference for the Environment object, just like self.env in a class
method.

• model: This is a reference to the model class that the server action acts upon. In
our example, it is equivalent to self.env['project.task].

• Warning: This is a reference to openerp.exceptions.Warning,
allowing validations that block unintended actions. It can be used as raise
Warning('Message!').

• Record or records: This provides references to the current record or records,
allowing you to access their field values and methods.

https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/datetime.html

390 Automation, Workflows, Emails, and Printing

• log: This is a function to log messages in the ir.logging model, allowing
database-side logging-on actions.

• datetime, dateutil, and time: These provide access to the Python libraries.

Using Python code server actions
Server actions have several types available, but executing arbitrary Python code is
the most flexible option. When used wisely, it empowers users with the capability to
implement advanced business rules from the user interface, without the need to create
specific add-on modules to install that code.

We will demonstrate using this type of server action by implementing a server action that
sends reminder notifications to the followers of a project task.

Getting ready
We will need an Odoo instance with the Project app installed.

How to do it...
To create a Python code server action, follow these steps:

1. Create a new server action. In the Settings menu, select the Technical | Actions |
Server Actions menu item, and click on the Create button at the top of the record
list.

2. Fill out the Server Action form with the following values:

Action Name: Send Reminder

Base Model: Task

Action To Do: Execute Python Code

3. In the Python Code text area, remove the default text and replace it with the
following code:

if not record.date_deadline:
 raise Warning('Task has no deadline!')
delta = record.date_deadline - datetime.date.today()
days = delta.days
if days==0:
 msg = 'Task is due today.'
elif days < 0:
 msg = 'Task is %d day(s) late.' % abs(days)

Using Python code server actions 391

else:
 msg = 'Task will be due in %d day(s).' % days
record.message_post(body=msg, subject='Reminder',
subtype='mt_comment')

The following screenshot shows the entered values:

Figure 12.10 – Python code with the values entered

4. Save the server action and click on Create Contextual Action at the top left to make
it available under the project task's More button.

5. Now, click on the Project top menu and select the Search | Tasks menu item. Pick
a random task, set a deadline date on it, and then try the Send Reminder option
under the More button.

This works just like the previous recipe; the only difference is, this server action will run
your Python code. Once you run the server action on a task, it will put a message in
the chatter.

392 Automation, Workflows, Emails, and Printing

How it works...
The Creating server actions recipe of this chapter provides a detailed explanation of how
to create a server action in general. For this particular type of action, we need to pick the
Execute Python Code option and then write the code to run the text area.

The code can have multiple lines, as is the case in our recipe, and it runs in a context
that has references to objects such as the current record object or the session user. The
references available are described in the Creating server actions recipe.

The code we used computes the number of days from the current date until the deadline
date and uses that to prepare an appropriate notification message. The last line does the
actual posting of the message in the task's message wall. The subtype='mt_comment'
argument is needed for email notifications to be sent to the followers, just like when we
use the New Message button. If no subtype is given, mt_note is used as a default, posting
an internal note without notification, as if we had used the Log an internal note button.
Refer to Chapter 23, Managing Emails in Odoo, to learn more about mailing in Odoo.

There's more...
Python code server actions are a powerful and flexible resource, but they do have some
limitations compared to the custom add-on modules.

Because the Python code is evaluated at runtime, if an error occurs, the stack trace is not
as informative and can be harder to debug. It is also not possible to insert a breakpoint in
the code of a server action using the techniques shown in Chapter 7, Debugging Modules,
so debugging needs to be done using logging statements. Another concern is that, when
trying to track down the cause of behavior in the module code, you may not find anything
relevant. In this case, it's probably caused by a server action.

When carrying out a more intensive use of server actions, the interactions can be quite
complex, so it is advisable to plan properly and keep them organized.

See more
• Refer to Chapter 23, Managing Emails in Odoo, to learn more about mailing

in Odoo.

Using automated actions on time conditions 393

Using automated actions on time conditions
Automated actions can be used to automatically trigger actions based on time conditions.
We can use them to automatically perform some operations on records that meet certain
criteria and time conditions.

As an example, we can trigger a reminder notification for project tasks one day before
their deadline, if they have one. Let's see how this can be done.

Getting ready
To follow this recipe, we will need to have both the project management app (which has
the technical name project) and the Automated Action Rules add-on (which has
the technical name base_automation) already installed, and have Developer Mode
activated. We will also need the server action created in the Using Python code server
actions recipe of this chapter.

How to do it...
To create an automated action with a timed condition on tasks, follow these steps:

1. In the Settings menu, select the Technical | Automation | Automated Actions
menu item, and click on the Create button.

2. Fill out the basic information on the Automated Actions form:

Rule Name: Send notification near deadline.

Model: Task.

Select Based on Time Condition in the Trigger Condition field.

In Action To Do, select Execute several actions.

3. To set the record criteria, click on the Edit Domain button in the Apply
on section. In the pop-up dialog, set a valid domain expression in the
code editor, ["&",["date_deadline","!=",False],["stage_
id.fold","=",False]], and click on the Save button. When changing to
another field, the information on the number of records meeting the criteria is
updated and displays Record(s) buttons. By clicking on the Records button, we can
check the records list of the records meeting the domain expression.

4. To set the time condition for Trigger Date, select the field to use, which is
Deadline, and set Delay after trigger date to -1 Days.

394 Automation, Workflows, Emails, and Printing

5. On the Actions tab, under Server actions to run, click on Add an item and pick
Send Reminder from the list, which should have been created previously. Refer to
the following screenshot:

Figure 12.11 – Automated action form view

If not, we can still create the server action to run using the Create button.

6. Click on Save to save the automated action.

7. Perform the following steps to try it out:

• Go to the Project menu, go to Search | Tasks, and set a deadline on a task with the
date in the past.

• Go to the Settings menu, click on the Technical | Automation | Scheduled Actions
menu item, find the Base Action Rule: check and execute action in the list, open its
form view, and press on the Run Manually button at the top left. This forces timed
automated actions to be checked now. This is shown in the following screenshot.
Note that this should work on a newly created demo database, but might not work
this way in an existing database:

Using automated actions on time conditions 395

Figure 12.12 – Run automated action (for test)

8. Again, go to the Project menu and open the same task you previously set a deadline
date on. Check the message board; you should see the notification generated by the
server action triggered by our automated action.

After adding add the time-based automated action for the deadline, a reminder
message will be added to the task one day before the deadline.

How it works...
Automated actions act on a model, and can be triggered either by events or time
conditions. The first steps are to set the Model and When to Run values.

Both methods can use a filter to narrow down the records that are eligible to perform
the action on. We can use a domain expression for this. You can find further information
about writing domain expressions in Chapter 9, Backend Views. Alternatively, you can
create and save a filter on project tasks, using the user interface features, and then copy the
automatically generated domain expression, selecting it from the Set selection based on
a search filter list.

The domain expression we used selects all the records with a non-empty Deadline date,
in a stage where the Fold flag is not checked. Stages without the Fold flag are considered
to be work-in-progress. This way, we avoid triggering notifications on tasks that are in the
Done, Canceled, or Closed stages.

396 Automation, Workflows, Emails, and Printing

Then, we should define the time condition – the date field to use and when the action
should be triggered. The time period can be in minutes, hours, days, or months, and the
number set for the period can be positive, indicating the time after the date, or negative,
indicating the time before the date. When using a time period in days, we can provide
a resource calendar that defines the working days and that can be used by the day count.

These actions are checked by the Check Action Rules scheduled job. Note that, by default,
this is run every 4 hours. This is appropriate for actions that work on a day or month scale,
but if you need actions that work on smaller timescales, you need to change the running
interval to a smaller value.

Actions will be triggered for records that meet all the criteria and whose triggering date
condition (the field date plus the interval) is after the last action execution. This is to avoid
repeatedly triggering the same action. Also, this is why manually running the preceding
action will work in a database in which the scheduled action has not yet been triggered,
but why it might not work immediately in a database where it was already run by the
scheduler.

Once an automated action is triggered, the Actions tab tells you what should happen.
This might be a list of server actions that do things such as changing values on the record,
posting notifications, or sending out emails.

There's more...
These types of automated actions are triggered once a certain time condition is reached.
This is not the same as regularly repeating an action while a condition is still true. For
example, an automated action will not be capable of posting a reminder for every day after
the deadline has been exceeded.

This type of action can, instead, be performed by scheduled actions, which are stored in
the ir.cron model. However, scheduled actions do not support server actions; they can
only call an existing method of a model object. So, to implement a custom action, we need
to write an add-on module, adding the underlying Python method.

For reference, the technical name for the model is base.action.rule.

See more
• For further details about writing domain expressions, refer to Chapter 9,

Backend Views.

Using automated actions on event conditions 397

Using automated actions on event conditions
Business applications provide systems with records for business operations but are
also expected to support dynamic business rules that are specific to the organization's
use cases.

Carving these rules into custom add-on modules can be inflexible and out of the reach
of functional users. Automated actions triggered by event conditions can bridge this gap
and provide a powerful tool to automate or enforce the organization's procedures. As an
example, we will enforce validation on project tasks so that only the project manager can
change tasks to the Done stage.

Getting ready
To follow this recipe, you will need to have the project management app already installed.
We also need to have Developer Mode activated. If it's not activated already, activate it in
the Odoo About dialog.

How to do it...
To create an automated action with an event condition on tasks, follow these steps:

1. In the Settings menu, select the Technical | Automation |Automated Actions
menu item, and click on the Create button

2. Fill out the basic information in the Automated Actions form:

Action Name: Validate Closing Tasks

Model: Task

Trigger Condition: On Update

Action To Do: Execute several actions

Watched fields: Stage id

3. The On Update rules allow you to set two record filters, before and after the update
operation:

For the Before Update Filter field, click on the Edit Domain button, set a valid
domain expression – [('stage_id.name', '!=', 'Done')] – in the code
editor, and save.

398 Automation, Workflows, Emails, and Printing

For the Apply on field, click on the Edit Domain button, set the [('stage_
id.name', '=', 'Done')] domain in the code editor, and save, as shown in
the following screenshot:

Figure 12.13 – Automated action form view

4. In the Actions tab, click on Add an item. In the list dialog, click on the Create
button to create a new server action.

5. Fill out the server action form with the following values, and then click on the
Save button:

Action Name: Validate Closing tasks

Model: Task

Action To Do: Execute Python Code

Python Code: Enter the following code:
if user != record.project_id.user_id:
 raise Warning('Only the Project Manager can close
Tasks')

Using automated actions on event conditions 399

The following screenshot shows the entered values:

Figure 12.14 – Add child action

6. Click on Save & Close to save the automated action and try it out:

• On a database with demo data and where you're logged in as an administrator, go to
the Project menu and click on the project to open the kanban view of the tasks.

• Then, try dragging one of the tasks into the Done stage column. Since this project's
manager is the Demo user and we are working with the Administrator user,
our automated action should be triggered, and our warning message should block
the change.

How it works...
We start by giving a name to our automated actions and setting the model it should
work with. For the type of action we require, we should choose On Update, but the On
Creation, On Creation & Update, On Deletion, and Based On Form Modification
options are also possible.

Next, we define the filters to determine when our action should be triggered. The On
Update actions allow us to define two filters – one to check before and the other after the
changes are made to the record. This can be used to express transitions – to detect when
a record changes from state A to state B. In our example, we want to trigger the action
when a not-done task changes to the done stage. The On Update action is the only one that
allows these two filters; the other action types only allow one filter.

400 Automation, Workflows, Emails, and Printing

Important note
It is important to note that our example condition will only work correctly
for English language users. This is because Stage Name is a translatable field
that can have different values for different languages. So, the filters on the
translatable fields should be avoided or used with care.

Finally, we create and add one (or more) server actions with whatever we want to be done
when the automated action is triggered. In this case, we chose to demonstrate how to
implement custom validation, making use of a Python code server action that used the
Warning exception to block the user's changes.

There's more...
In Chapter 5, Basic Server-Side Development, we saw how to redefine the write()
methods of a model to perform actions on record updates. Automated actions on record
updates provide another way to achieve this, with some benefits and drawbacks.

Among the benefits, it is easy to define an action triggered by the update of a stored
computed field, which is tricky to do in pure code. It is also possible to define filters on
records and have different rules for different records, or for records matching different
conditions that can be expressed with search domains.

However, automated actions can have disadvantages when compared to Python business
logic code inside modules. With poor planning, the flexibility provided can lead to
complex interactions that are difficult to maintain and debug. Also, the before-and-after
write filter operations bring some overhead, which can be an issue if you are performing
sensitive actions.

Creating QWeb-based PDF reports
When communicating with the outside world, it is often necessary to produce a PDF
document from a record in the database. Odoo uses the same template language as that
used for form views: QWeb.

In this recipe, we will create a QWeb report to print information about a book that is
currently being borrowed by a partner. This recipe will reuse the models presented in the
Adding a progress bar in kanban views recipe from earlier on in this chapter.

Creating QWeb-based PDF reports 401

Getting ready
If you haven't done so already, install wkhtmltopdf as described in Chapter 1, Installing
the Odoo Development Environment; otherwise, you won't get shiny PDFs as a result of
your efforts.

Also, double-check that the web.base.url configuration parameter (or, alternatively,
report.url) is a URL that is accessible from your Odoo instance; otherwise, the report
will take a long time to generate and the result will look strange.

How to do it...
1. In this recipe, we will add a report to res.partner that prints a list of books that

the partner borrowed. We need to add a one2many field to the partner model with
relation to the library.book.rent model, as shown in the following example:

class ResPartner(models.Model):
 _inherit = 'res.partner'

 rent_ids = fields.One2many('library.book.rent',
'borrower_id')

2. Define a view for your report in reports/book_rent_templates.xml,
as follows:

<?xml version="1.0" encoding="utf-8"?>
<odoo>
<template id="book_rents_template">
 <t t-call="web.html_container">
 <t t-foreach="docs" t-as="doc">
 <t t-call="web.internal_layout">
 <div class="page">
 <h1>Book Rent for <t t-esc="doc.
name"/></h1>
 <table class="table table-condensed">
 <thead>
 <tr>
 <th>Title</th>
 <th>Expected return
date</th>
 </tr>
 </thead>
 <tbody>
 <tr t-foreach="doc.rent_ids"
t-as="rent" >

402 Automation, Workflows, Emails, and Printing

 <td><t t-esc="rent.book_
id.name" /></td>
 <td><t t-esc="rent.
return_date" /></td>
 </tr>
 </tbody>
 </table>
 </div>
 </t>
 </t>
 </t>
</template>
</odoo>

3. Add a tag in reports/book_rent_report.xml, as shown in the following
example:

<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <record id="report_book_rent" model="ir.actions.
report">

 <field name="name">Book Rents</field>

 <field name="model">res.partner</field>

 <field name="report_type">qweb-pdf</field>

 <field name="report_name">my_library.book_rents_
template</field>

 <field name="report_file">my_library.book_rents_
template</field>

 <field name="binding_model_id" ref="model_res_
partner"/>

 <field name="binding_type">report</field>

</record>
</odoo>

4. Add both files to the manifest of the add-on and add contacts to depends, so
that you can open the form view of the partner, as shown in the following example:

...
 'depends': ['base', 'contacts'],
 'data': [
 'views/library_book.xml',
 'views/library_member.xml',
 ...

Creating QWeb-based PDF reports 403

 'reports/book_rent_report.xml',
 'reports/book_rent_templates.xml',
],
...

Now, when opening the partner form view, or when selecting partners in the list view, you
should be offered the option to print the book loans in a drop-down menu, as shown in
the following screenshot:

Figure 12.15 – Print action for report

How it works...
In step 1, we added a one2many rent_ids field. This field will contain rent records
for the customer. We will use it in the QWeb report to list the books that the customer
has rented.

In step 2, we defined the QWeb template. The content of the template will be used to
generate the PDF. In our example, we have used some basic HTML structure. We have
also used some attributes such as t-esc and t-foreach, which are used to generate
dynamic content in the report. Don't worry about this syntax within the template
element for now. This topic will be addressed extensively in the Creating or modifying
templates – QWeb recipe in Chapter 14, CMS Website Development. Another important
thing to notice in the template is the layout. In our example, we have used web.
internal_layout in our template, which will generate the final PDF with a minimal
header and footer. If you want an informative header and footer with the company logo
and company information, use the web.external_layout layout. We have also added
one for loop to the docs parameter that will be used to generate a report for multiple
records when the user prints it from the list view.

404 Automation, Workflows, Emails, and Printing

In step 3, we declared the report in another XML file via the <record> tag. It will register
the report's ir.actions.report model. The crucial part here is that you set the
report_name field to the complete XML ID (that is, modulename.record_id) of
the template you defined, or the report generation will fail. The model field determines
which type of record the report operates, and the name field is the name shown to the
user in the print menu.

Note
In previous versions of Odoo, a <report> tag was used to register a report.
But from version v14, it is deprecated and you need to create a record of
ir.actions.report with the <record> tag. The <report> tag is
still supported in Odoo v14 for backward compatibility but using it will show a
warning in the log.

By setting report_type to qweb-pdf, we requested that the HTML generated by our
view is run through wkhtmltopdf in order to deliver a PDF to the user. In some cases,
you may want to use qweb-html to render the HTML within the browser.

There's more...
There are some marker classes in a report's HTML that are crucial for the layout. Ensure
that you wrap all your content in an element with the page class set. If you forget that,
you'll see nothing at all. To add a header or footer to your record, use the header or
footer class.

Also, remember that this is HTML, so make use of CSS attributes such as page-break-
before, page-break-after, and page-break-inside.

You'll have noted that all of our template body is wrapped in two elements with the
t-call attribute set. We'll examine the mechanics of this attribute later in Chapter 14,
CMS Website Development, but it is crucial that you do the same in your reports. These
elements ensure that the HTML generates links to all the necessary CSS files and contains
some other data that is needed for the report generation. While web.html_container
doesn't really have an alternative, the second t-call can be web.external_layout.
The difference is that the external layout already comes with a header and footer
displaying the company logo, the company's name, and some other information you
expect from a company's external communication, while the internal layout just gives
you a header with pagination, the print date, and the company's name. For the sake of
consistency, always use one of the two.

Managing activities from a kanban card 405

Important note
Note that web.internal_layout, web.external_layout, web.
external_layout_header, and web.external_layout_
footer (the last two are called by the external layout) are just views by
themselves, and you already know how to change them by inheritance. To
inherit with the template element, use the inherit_id attribute.

Managing activities from a kanban card
Odoo uses activities to schedule actions on records. These activities can be managed in
form view and the kanban view. In this recipe, we will see how you can manage activities
from the kanban view card. We will add an activity widget to the cards of the rent kanban.

Getting started
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
Follow these steps to add and mange activity from the kanban view:

1. Add mail dependencies to the manifest file:

 'depends': ['base', 'mail'],

2. Inherit activity mixin in the library.book.rent model:

 class LibraryBookRent(models.Model):

 _name = 'library.book.rent'

 _inherit = ['mail.thread', 'mail.activity.mixin']

3. Add the activity_state field to the kanban view under the color field:

<field name="color" />

<field name="activity_state"/>

4. Add the activity_ids field inside the kanban template. Add this field under the
popularity field as in the given code:

<div>

 <field name="popularity" widget="priority"/>

</div>

406 Automation, Workflows, Emails, and Printing

<div>

 <field name="activity_ids" widget="kanban_activity"/>

</div>

Update the my_library module to apply the change. Open the kanban view
of book rents and you will see the activity manger on the kanban card, as in the
following screenshot:

Figure 12.16 – Activity manager in a kanban card

As you can see in the preceding screenshot, after applying the code from this recipe, you
will be able to manage activity from a kanban card. Also, you can process or create an
activity from a kanban card.

How it works...
In step 1, we added a dependency to the manifest of our module. The reason behind this
is, all the implementation associated with the activity is part of the mail module. Without
installing mail, we cannot use activities in our model.

In step 2, we added activity mixin to the library.book.rent model. This will
enable activities for the book rent records. Adding mail.activity.mixin will add
all the fields and methods required for activities. We have also added the mail.thread
mixin because the activity logs the message when the user processes the activity. If you
want to learn more about this activity, please refer to the Managing activities on documents
recipe of Chapter 23, Managing Emails in Odoo.

Adding a stat button to a form view 407

In step 3, we added the activity_state field to the kanban view. This field is used by
the activity widget to display the color widget. The color will represent the current state of
the upcoming activity.

In step 4, we added the activity widget itself. It uses the activity_ids field. In our
example, we have added the activity widget in a separate <div> tag, but you can put
it anywhere according to your design requirements. With the activity widget, you can
schedule, edit, and process the activity directly from the kanban card.

There's more…
In the Adding a progress bar in kanban views recipe of this chapter, we displayed a kanban
progress bar based on the popularity field. But we can also show a progress bar based
on the state of the upcoming activity:

<progressbar field="activity_state"

 colors='{"planned": "success",

 "today": "warning",

 "overdue": "danger"}'/>

This will show the progress bar based on the state of the upcoming activity. A state-based
progress bar is used in several views in Odoo.

See also
• If you want to learn more about the mail thread, refer to the Managing chatter on

documents recipe of Chapter 23, Managing Emails in Odoo.

• If you want to learn more about activities, refer to the Managing activities on
documents recipe of Chapter 23, Managing Emails in Odoo.

Adding a stat button to a form view
Odoo uses a stat button to relate two different objects visually on the form view. It is used
to show some basic KPIs for related records. It is also used to redirect and open another
view. In this recipe, we will add a stat button to the form view of a book. This stat button
will display the count of rent records and on clicking it, we will be redirected to the list of
kanban views.

Getting started
For this recipe, we will be using the my_library module from the previous recipe.

408 Automation, Workflows, Emails, and Printing

How to do it...
Follow these steps to add a stat button to the book's form view:

1. Add the rent_count compute field to the library.book model. This field will
count the number of rent orders for a book:

rent_count = fields.Integer(compute="_compute_rent_
count")

def _compute_rent_count(self):

 BookRent = self.env['library.book.rent']

 for book in self:

 book.rent_count = BookRent.search_count(

 [('book_id', '=', book.id)]

)

2. Add a stat button to the form view of the library.book model. Prepend it just
inside the <sheet> tag:

<div class="oe_button_box" name="button_box">

 <button class="oe_stat_button"

 name="%(library_book_rent_action)d"

 type="action" icon="fa-book"

 context="{'search_default_book_id': active_
id}">

 <field string="Rent Orders"

 name="rent_count"

 widget="statinfo"/>

 </button>

</div>

Update the my_library module to apply the changes. Open the form view of any
book and you will find the stat button, as in the following screenshot:

Figure 12.17 – Stat button in a book's form view

Adding a stat button to a form view 409

On clicking the stat button, you will be redirected to the rent orders kanban view. Here, in
kanban, you will see orders only from the current book.

How it works...
In step 1, we added a compute field that calculates the number of rent records for the
current book. The value of this field will be used for a stat button to show the count. If you
want to learn more about compute, refer to the Adding computed fields to a model recipe in
Chapter 4, Application Models.

In step 2, we added the stat button in the form view of the library.book model. There
are a specific syntax and location for the stat button. All the stat button needs to do is
wrap under <div> with the oe_button_box class. The stat button box needs to be
placed inside the <sheet> tag. Note that we have used a name attribute on the button
box. This name attribute is useful when you want to add a new stat, but then you will need
to add a stat button with the <button> tag with the oe_stat_button class. Internally,
the stat button is just a form view button with a different user interface. This means it
supports all of the attributes that are supported by a normal button, such as an action,
icon, and context.

In our example, we have used the action of rent orders, which means when the user clicks
on the stat button, they will be redirected to the rent records but it will show all the rent
records. We want to show the rent records only for the current book. To do so, we have to
pass search_default_book_id. This will apply a default filter for the current book.
Note that book_id is the many2one field on the library.book.rent model. If you
want to filter by another field, use it by prefixing it with search_default_ in context.

Stat buttons are used often as they are very useful and show the overall statistics related to
a record. You could use them to show all the information that relates to the current record.
For example, on the contact record, Odoo shows stat buttons that show information
related to the current contact total of the invoice, the number of leads, the number of
orders, and so on.

See also
• To learn more about buttons, refer to the Adding buttons to forms recipe in Chapter

9, Backend Views

• To learn more about actions, refer to the Adding a menu item and window action
recipe in Chapter 9, Backend Views

410 Automation, Workflows, Emails, and Printing

Enabling the archive option for records
Odoo provides inbuilt features to enable archive and unarchive options for records. This
will help the user to hide records that are no longer important. In this recipe, we will add
an archive/unarchive option for a book. We can archive a book once it is not available.

Getting started
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
Archive and unarchive mostly work automatically. The options are available on a record
if the model has a Boolean field named active. We already have an active field in
the library.book model. But if you have not added it, follow these steps to add the
active field:

1. Add an active Boolean field to the library.book model like this:

active = fields.Boolean(default=True)

2. Add an active field in the form view:

<field name="active" invisible="1"/>

Update the my_library module to apply the changes. Now, you will be able to archive
books. The archive option is available in the Action dropdown, as in the following
screenshot:

Figure 12.18 – Archive option on the form view

Once you archive a record, you want to see that record anywhere in Odoo. In order to see
it, you need to apply a filter from the search view.

Enabling the archive option for records 411

How it works...
A Boolean field named active has a special purpose in Odoo. If you add an active
field to your model, records with a false value in the active field won't be displayed
anywhere in Odoo.

In step 1, we added an active field to the library.book model. Note that we kept
the default value of True here. If we don't add this default value, the new records will
be created in archive mode by default and won't be displayed in views, even if we have
recently created them.

In step 2, we added the active field in the form view. If you don't add an active
field in the form view, the archive/unarchive option won't be displayed in the Action
drop-down menu. If you don't want to show the field in the form view, you can use the
invisible attribute to hide it from the form view.

In our example, once you archive a book, then that book will not be displayed in the tree
view or any other view. The book won't even be displayed in the many2one dropdown in
the rent order record. If you want to unarchive that book, then you need to apply a filter to
display archived records from the search view, then restore the book.

There's more…
If your model has an active Boolean field, the search method will not return an
archived record. If you want to search all the records, whether they are archived or not,
then pass active_test in context like this:

self.env['library.book'].with_context(active_test=False).
search([])

Note that if the archive record is linked to another record, then it will be displayed in the
related form view. For example, say you have rent Order A for Book A. Then, you archive
Book A, which means from now on, you cannot select Book A in the rent order. But if you
open Order A, you will see the archived Book A.

13
Web Server

Development
We'll introduce the basics of the web server part of Odoo in this chapter. Note that this
will cover the fundamental aspects. For high-level functionality, you should refer to
Chapter 14, CMS Website Development.

All of Odoo's web request handling is driven by the Python library werkzeug
(https://werkzeug.palletsprojects.com/en/1.0.x/). While the
complexity of werkzeug is mostly hidden by Odoo's convenient wrappers, it is
interesting to see how things work under the hood, if you want to read up on it.

In this chapter, we'll cover the following topics:

• Making a path accessible from the network

• Restricting access to web-accessible paths

• Consuming parameters passed to your handlers

• Modifying an existing handler

• Serving static resources

https://werkzeug.palletsprojects.com/en/1.0.x/

414 Web Server Development

Technical requirements
The technical requirements for this chapter include the online Odoo platform.

All the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter13.

Making a path accessible from the network
In this recipe, we'll look at how to make a URL of the http://yourserver/path1/
path2 form accessible to users. This can be either a web page or a path returning
arbitrary data to be consumed by other programs. In the latter case, you would usually use
JSON format to consume parameters and offer your data.

Getting ready
We'll make use of the library.book model, which we looked at in Chapter 4,
Application Models; so, if you haven't done so yet, grab the initial module from https://
github.com/PacktPublishing/Odoo-14-Development-Cookbook-
Fourth-Edition/tree/master/Chapter13/00_initial_module, so that you
will be able to follow the examples.

We want to allow any user to query the full list of books. Furthermore, we want to provide
the same information to programs through a JSON request.

How to do it...
We'll need to add controllers, which go into a folder called controllers by convention:

1. Add a controllers/main.py file with the HTML version of our page,
as follows:

from odoo import http
from odoo.http import request

class Main(http.Controller):
 @http.route('/my_library/books', type='http',
auth='none')
 def books(self):
 books = request.env['library.book'].sudo().
search([])
 html_result = '<html><body>'
 for book in books:

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter13/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter13/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter13/00_initial_module

Making a path accessible from the network 415

 html_result += " %s " % book.name
 html_result += '</body></html>'
 return html_result

2. Add a function to serve the same information in JSON format, as shown in the
following example:

 @http.route('/my_library/books/json', type='json',
auth='none')
 def books_json(self):
 records = request.env['library.book'].sudo().
search([])
 return records.read(['name'])

3. Add the controllers/__init__.py file, as follows:

from . import main

4. Import controllers to your my_library/__init__.py file, as follows:

from . import controllers

After restarting your server, you can visit /my_library/books in your browser and
you'll be presented with a flat list of book names. To test the JSON-RPC part, you'll have to
craft a JSON request. A simple way to do that would be by using the following command
to receive the output on the command line:

curl -i -X POST -H "Content-Type: application/json" -d "{}"
localhost:8069/my_library/books/json

If you get 404 errors at this point, you probably have more than one database available on
your instance. In that case, it's impossible for Odoo to determine which database is meant
to serve the request.

Use the --db-filter='^yourdatabasename$' parameter to force Odoo to use the
exact database you installed the module in. The path should now be accessible.

416 Web Server Development

How it works...
The two crucial parts here are that our controller is derived from odoo.http.
Controller, and the methods we use to serve content are decorated with odoo.http.
route. Inheriting from odoo.http.Controller registers the controller with Odoo's
routing system in a similar way to how the models are registered, by inheriting from
odoo.models.Model. Also, Controller has a metaclass that takes care of this.

In general, paths handled by your add-on should start with your add-on's name, to avoid
name clashes. Of course, if you extend some of the add-on's functionality, you'll use this
add-on's name.

odoo.http.route
The route decorator allows us to tell Odoo that a method should be web-accessible in
the first place, and the first parameter determines on which path it is accessible. Instead
of a string, you can also pass a list of strings, in case you use the same function to serve
multiple paths.

The type argument defaults to http and determines what type of request is to be served.
While, strictly speaking, JSON is HTTP, declaring the second function as type='json'
makes life a lot easier, because Odoo then handles type conversions for us.

Don't worry about the auth parameter for now; it will be addressed in the Restricting
access to web-accessible paths recipe in this chapter.

Return values
Odoo's treatment of the functions' return values is determined by the type argument of
the route decorator. For type='http', we usually want to deliver some HTML, so
the first function simply returns a string containing it. An alternative is to use request.
make_response(), which gives you control over the headers to send in the response.
So, to indicate when our page was last updated, we might change the last line in books()
to the following code:

return request.make_response(

 html_result, headers=[

 ('Last-modified', email.utils.formatdate(

 (

 fields.Datetime.from_string(

 request.env['library.book'].sudo()

 .search([], order='write_date desc', limit=1)

 .write_date) -

Making a path accessible from the network 417

 datetime.datetime(1970, 1, 1)

).total_seconds(),

 usegmt=True)),

])

This code sends a Last-modified header along with the HTML we generated, telling
the browser when the list was modified for the last time. We can extract this information
from the write_date field of the library.book model.

In order for the preceding snippet to work, you'll have to add some imports at the top of
the file, as follows:

import email

import datetime

from odoo import fields

You can also create a Response object of werkzeug manually and return that, but
there's little to gain for the effort.

Important information
Generating HTML manually is nice for demonstration purposes, but
you should never do this in production code. Always use templates, as
demonstrated in the Creating or modifying templates – QWeb recipe in
Chapter 15, Web Client Development, and return them by calling request.
render().

This will give you localization for free and will make your code better by
separating business logic from the presentation layer. Also, templates provide
you with functions to escape data before outputting HTML. The preceding
code is vulnerable to cross-site scripting attacks (if a user manages to slip a
script tag into the book name, for example).

For a JSON request, simply return the data structure you want to hand over to the client;
Odoo takes care of serialization. For this to work, you should restrict yourself to data
types that are JSON serializable, which generally means dictionaries, lists, strings, floats,
and integers.

418 Web Server Development

odoo.http.request
The request object is a static object referring to the currently handled request, which
contains everything you need in order to take action. The most important aspect here is
the request.env property, which contains an Environment object that is just the
same as self.env for models. This environment is bound to the current user, which is
not in the preceding example, because we used auth='none'. The lack of a user is also
why we have to sudo() all our calls to model methods in the example code.

If you're used to web development, you'll expect session handling, which is perfectly
correct. Use request.session for an OpenERPSession object (which is quite
a thin wrapper around the Session object of werkzeug), and request.session.
sid to access the session ID. To store session values, just treat request.session as
a dictionary, as shown in the following example:

request.session['hello'] = 'world'

request.session.get('hello')

Important note
Note that storing data in the session is no different from using global variables.
Only use it if you must. This is usually the case for multi-request actions, such
as a checkout in the website_sale module.

There's more...
The route decorator can have some extra parameters, in order to customize its behavior
further. By default, all HTTP methods are allowed, and Odoo intermingles the parameters
passed. Using the methods parameter, you can pass a list of methods to accept, which
would usually be one of either ['GET'] or ['POST'].

To allow cross-origin requests (browsers block AJAX and some other types of requests
to domains other than where the script was loaded from, for security and privacy
reasons), set the cors parameter to * to allow requests from all origins, or a URI to
restrict requests to ones originating from this URI. If this parameter is unset, which is the
default, the Access-Control-Allow-Origin header is not set, leaving you with the
browser's standard behavior. In our example, we might want to set it on /my_module/
books/json, in order to allow scripts pulled from other websites to access the list
of books.

By default, Odoo protects certain types of requests from an attack known as cross-site
request forgery, by passing a token along on every request. If you want to turn that off, set
the csrf parameter to False, but note that this is a bad idea, in general.

Restricting access to web-accessible paths 419

See also
Refer to the following points to learn more about the HTTP routes:

• If you host multiple Odoo databases on the same instance, then different databases
might be running on different domains. In that case, you can use --db-filter
options, or you can use the dbfilter_from_header module from https://
github.com/OCA/server-tools, which helps you filter databases based on
domain. This module was not migrated to version 12 at the time of writing this
book, but by the time of publication, it probably will have been.

• To see how using templates makes modularity possible, check out the Modifying an
existing handler recipe later in the chapter.

Restricting access to web-accessible paths
We'll explore the three authentication mechanisms Odoo provides for routes in this
recipe. We'll define routes with different authentication mechanisms, in order to show
their differences.

Getting ready
As we extend the code from the previous recipe, we'll also depend on the library.book
model of Chapter 4, Application Models, so you should get its code in order to proceed.

How to do it...
Define the handlers in controllers/main.py:

1. Add a path that shows all the books, as shown in the following example:

@http.route('/my_library/all-books', type='http',
auth='none')
def all_books(self):
 books = request.env['library.book'].sudo().search([])
 html_result = '<html><body>'
 for book in books:
 html_result += " %s " % book.name
 html_result += '</body></html>'
 return html_result

https://github.com/OCA/server-tools
https://github.com/OCA/server-tools

420 Web Server Development

2. Add a path that shows all the books and indicates which were written by the current
user, if any. This is shown in the following example:

@http.route('/my_library/all-books/mark-mine',
type='http', auth='public')
def all_books_mark_mine(self):
 books = request.env['library.book'].sudo().search([])
 html_result = '<html><body>'
 for book in books:
 if request.env.user.partner_id.id in book.author_
ids.ids:
 html_result += " %s " % book.
name
 else:
 html_result += " %s " % book.name
 html_result += '</body></html>'
 return html_result

3. Add a path that shows the current user's books, as follows:

@http.route('/my_library/all-books/mine', type='http',
auth='user')
def all_books_mine(self):
 books = request.env['library.book'].search([
 ('author_ids', 'in', request.env.user.partner_
id.ids),
])
 html_result = '<html><body>'
 for book in books:
 html_result += " %s " % book.name
 html_result += '</body></html>'
 return html_result

With this code, the /my_library/all-books and /my_library/all-books/
mark-mine paths look the same for unauthenticated users, while a logged-in user sees
their books in bold font on the latter path. The /my_library/all-books/mine
path is not accessible at all for unauthenticated users. If you try to access it without being
authenticated, you'll be redirected to the login screen in order to do so.

Restricting access to web-accessible paths 421

How it works...
The difference between authentication methods is basically what you can expect from the
content of request.env.user.

For auth='none', the user record is always empty, even if an authenticated user is
accessing the path. Use this if you want to serve content that has no dependencies on
users, or if you want to provide database-agnostic functionality in a server-wide module.

The auth='public' value sets the user record to a special user with an XML ID
of base.public_user for unauthenticated users, and to the user's record for
authenticated ones. This is the right choice if you want to offer functionality to both
unauthenticated and authenticated users, while the authenticated ones get some extras, as
demonstrated in the preceding code.

Use auth='user' to ensure that only authenticated users have access to what you've
got to offer. With this method, you can be sure that request.env.user points to an
existing user.

There's more...
The magic of authentication methods happens in the ir.http model from the base
add-on. For whatever value you pass to the auth parameter in your route, Odoo searches
for a function called _auth_method_<yourvalue> on this model, so you can easily
customize it by inheriting it and declaring a method that takes care of your authentication
method of choice.

As an example, we will provide an authentication method called base_group_user,
which will only authorize the user if the currently logged-in user is part of the base.
group_user group, as shown in the following example:

from odoo import exceptions, http, models

from odoo.http import request

class IrHttp(models.Model):

 _inherit = 'ir.http'

 def _auth_method_base_group_user(self):

 self._auth_method_user()

 if not request.env.user.has_group('base.group_user'):

 raise exceptions.AccessDenied()

422 Web Server Development

Now you can say auth='base_group_user' in your decorator and be sure that users
running this route's handler are members of the group. With a little trickery, you can
extend this to auth='groups(xmlid1,...)'; its implementation is left as an exercise
to the reader but is included in the GitHub repository example code at Chapter13/
r2_paths_auth/my_library/models/sample_auth_http.py.

Consuming parameters passed to your
handlers
It's nice to be able to show content, but it's better to show content as a result of user input.
This recipe will demonstrate the different ways to receive this input and react to it. As in
the previous recipes, we'll make use of the library.book model.

How to do it...
First, we'll add a route that expects a traditional parameter with a book's ID to show some
details about it. Then, we'll do the same, but we'll incorporate our parameter into the
path itself:

1. Add a path that expects a book's ID as a parameter, as shown in the following
example:

 @http.route('/my_library/book_details', type='http',
auth='none')
 def book_details(self, book_id):
 record = request.env['library.book'].sudo().
browse(int(book_id))
 return u'<html><body><h1>%s</h1>Authors: %s' % (
 record.name,
 u', '.join(record.author_ids.mapped('name'))
or 'none',
)

2. Add a path where we can pass the book's ID in the path, as follows:

@http.route("/my_library/book_details/<model('library.
book'):book>",
 type='http', auth='none')

def book_details_in_path(self, book):

 return self.book_details(book.id)

Consuming parameters passed to your handlers 423

If you point your browser to /my_library/book_details?book_id=1, you should
see a detailed page of the book with ID 1. If this doesn't exist, you'll receive an error page.

The second handler allows you to go to /my_library/book_details/1 and view the
same page.

How it works...
By default, Odoo (actually, werkzeug) intermingles the GET and POST parameters
and passes them as keyword arguments to your handler. So, by simply declaring your
function as expecting a parameter called book_id, you introduce this parameter as either
GET (the parameter in the URL) or POST (usually passed by the <form> element with
your handler as the action attribute). Given that we didn't add a default value for this
parameter, the runtime will raise an error if you try to access this path without setting the
parameter.

The second example makes use of the fact that in a werkzeug environment, most paths
are virtual, anyway. So, we can simply define our path as containing some input. In this
case, we say we expect the ID of a library.book instance as the last component of
the path. The name after the colon is the name of a keyword argument. Our function
will be called with this parameter passed as a keyword argument. Here, Odoo takes care
of looking up this ID and delivering a browse record, which, of course, only works if the
user accessing this path has appropriate permissions. Given that book is a browse record,
we can simply recycle the first example's function by passing book.id as a book_id
parameter, to give out the same content.

There's more...
Defining parameters within the path is a functionality delivered by werkzeug, called
converters. The model converter is added by Odoo, which also defines the converter
models that accept a comma-separated list of IDs and pass a recordset containing those
IDs to your handler.

The beauty of converters is that the runtime coerces parameters to the expected type,
whereas you're on your own with normal keyword parameters. These are delivered as
strings, and you have to take care of the necessary type conversions yourself, as seen in the
first example.

Built-in werkzeug converters include int, float, and string, but also more intricate
ones, such as path, any, and uuid. You can look up their semantics at https://
werkzeug.palletsprojects.com/en/1.0.x/.

https://werkzeug.palletsprojects.com/en/1.0.x/
https://werkzeug.palletsprojects.com/en/1.0.x/

424 Web Server Development

See also
If you want to learn more about the HTTP routes, refer to the following points:

• Odoo's custom converters are defined in ir_http.py in the base module and
registered in the _get_converters class method of ir.http. As an exercise,
you can create your own converter, which allows you to visit the /my_library/
book_details/Odoo+cookbook page to receive the details of this book (if you
added it to your library earlier).

• If you want to learn more about the form submission on the route, refer to the
Getting input from users recipe from Chapter 14, CMS Website Development.

Modifying an existing handler
When you install the website module, the /website/info path displays some
information about your Odoo instance. In this recipe, we will override this in order to
change this information page's layout, and to also change what is displayed.

Getting ready
Install the website module and inspect the /website/info path. In this recipe, we
will update the/website/info route to provide more information.

How to do it...
We'll have to adapt the existing template and override the existing handler. We can do this
as follows:

1. Override the qweb template in a file called views/templates.xml, as follows:

<?xml version="1.0" encoding="UTF-8"?>

<odoo>

 <template id="show_website_info"
 inherit_id="website.show_website_info">
 <xpath expr="//dl[@t-foreach='apps']"
position="replace">

 <table class="table">

 <tr t-foreach="apps" t-as="app">

 <th>

 <a t-att-href="app.website">

 <t t-esc="app.name" />

Modifying an existing handler 425

 </th>

 <td><t t-esc="app.summary" /></td>

 </tr>

 </table>

 </xpath>

 </template>

</odoo>

2. Override the handler in a file called controllers/main.py, as shown in the
following example:

from odoo import http

from odoo.addons.website.controllers.main import Website

class WebsiteInfo(Website):
 @http.route()
 def website_info(self):
 result = super(WebsiteInfo, self).website_info()
 result.qcontext['apps'] = result.
qcontext['apps'].filtered(
 lambda x: x.name != 'website'
)
 return result

Now, when visiting the info page, we'll only see a filtered list of installed applications in
a table, as opposed to the original definition list.

How it works…
In the first step, we overrode an existing QWeb template. In order to find out which
one it is, you'll have to consult the code of the original handler. Usually, this will give
you something similar to the following line, which tells you that you need to override
template.name:

return request.render('template.name', values)

In our case, the handler used a template called website_info, but this one was
immediately extended by another template called website.show_website_info,
so it's more convenient to override this one. Here, we replaced the definition list showing
installed apps with a table. For details on how QWeb inheritance works, consult Chapter
15, Web Client Development.

426 Web Server Development

In order to override the handler method, we must identify the class that defines the
handler, which is odoo.addons.website.controllers.main.Website, in
this case. We need to import the class to be able to inherit from it. Now, we can override
the method and change the data passed to the response. Note that what the overridden
handler returns here is a Response object and not a string of HTML like the previous
recipes did, for the sake of brevity. This object contains a reference to the template to be
used and the values accessible to the template, but it is only evaluated at the very end of
the request.

In general, there are three ways to change an existing handler:

• If it uses a QWeb template, the simplest way to change it is to override the template.
This is the right choice for layout changes and small logic changes.

• QWeb templates get a context passed, which is available in the response as the
qcontext member. This is usually a dictionary where you can add or remove
values to suit your needs. In the preceding example, we filtered the list of apps to the
website only.

• If the handler receives parameters, you can also preprocess those, in order to have
the overridden handler behave in the way you want.

There's more...
As seen in the preceding section, inheritance with controllers works slightly differently
than model inheritance; you actually need a reference to the base class and to use Python
inheritance on it.

Don't forget to decorate your new handler with the @http.route decorator; Odoo
uses it as a marker, for which methods are exposed to the network layer. If you omit the
decorator, you actually make the handler's path inaccessible.

The @http.route decorator itself behaves similarly to field declarations: every value you
don't set will be derived from the decorator of the function you're overriding, so we don't
have to repeat values we don't want to change.

After receiving a response object from the function you override, you can do a lot more
than just change the QWeb context:

• You can add or remove HTTP headers by manipulating response.headers.

• If you want to render an entirely different template, you can overwrite response.
template.

Serving static resources 427

• To detect whether a response is based on QWeb in the first place, query
response.is_qweb.

• The resulting HTML code is available by calling response.render().

See also
• Details on QWeb templates will be given in Chapter 15, Web Client Development.

Serving static resources
Web pages contain several types of static resources, such as images, videos, CSS, and so
on. In this recipe, we will see how you can manage such static resources for your module.

Getting ready
For this recipe, we will display an image on the page. So, get one image ready. Also, grab
the my_library module from the previous recipe.

How to do it...
Follow these steps to show an image on the page:

1. Add your image to the /my_library/static/src/img directory.

2. Define the new route in controller. In the code, replace the image URL with the
URL of your image:

@http.route('/demo_page', type='http', auth='none')

def books(self):

 image_url = '/my_library/static/src/image/odoo.png'

 html_result = """<html>

 <body>

 </body>

 </html>""" % image_url

 return html_result

Restart the server and update the module to apply the changes. Now visit /demo_page
to see the image on the page.

428 Web Server Development

How it works…
All the files placed under the /static folder are considered static resources and are
publicly accessible. In our example, we have put our image in the /static/src/img
directory. You can place the static resource anywhere under the static directory, but there
is a recommended directory structure based on the type of file:

• /static/src/img is the directory used for images.

• /static/src/css is the directory used for CSS files.

• /static/src/scss is the directory used for SCSS files.

• /static/src/fonts is the directory used for font files.

• /static/src/js is the directory used for JavaScript files.

• /static/src/xml is the directory used for XML files for client-side QWeb
templates.

• /static/lib is the directory used for files of external libraries.

In our example, we have displayed an image on the page. You can also access the image
directly from /my_library/static/src/image/odoo.png.

In this recipe, we displayed a static resource (an image) on the page and we saw the
recommended directories for different static resources. There are more simple ways to
present page content and static resources, which we will see in the next chapter.

14
CMS Website

Development
Odoo comes with a fully featured Content Management System (CMS). With drag-and-
drop features, your end user can design a page in a few minutes, but it is not so simple
to develop a new feature or building block in the Odoo CMS. In this chapter, you will
explore the frontend side of Odoo. You will learn how to create web pages. You will also
learn how to create building blocks that users can drag and drop on a page. Advanced
things such as Urchin Tracking Modules (UTMs), Search Engine Optimization (SEO),
multi-website, GeoIP, and sitemaps are also covered in this chapter. In short, you will learn
everything that is required to develop interactive websites.

Important information
All of the Odoo CMS features are implemented by the website and web_
editor modules. If you want to learn how the CMS works under the hood,
take a look at both of these modules. You may find the Code in Action video
here: http://bit.ly/2UH0eMM.

http://bit.ly/2UH0eMM

430 CMS Website Development

In this chapter, we will cover the following recipes:

• Managing static assets

• Adding CSS and JavaScript for a website

• Creating or modifying templates – QWeb

• Managing dynamic routes

• Offering static snippets to the user

• Offering dynamic snippets to the user

• Getting input from website users

• Managing SEO options

• Managing sitemaps for the website

• Getting a visitor's country information

• Tracking a marketing campaign

• Managing multiple websites

• Redirecting old URLs

• Publish management for website-related records

Managing static assets
Modern websites contain a lot of JavaScript and CSS files. When a page is loaded in the
browser, these static files make a separate request to the server. The higher the number of
requests, the lower the website speed. To avoid this issue, most websites serve static assets
by combining multiple files. There are several tools on the market to manage these sorts of
things, but Odoo has its own implementation for managing static assets.

What are asset bundles and different assets in Odoo?
In Odoo, static asset management is not as simple as it is in other apps. Odoo has a lot of
different applications and code bases. Different Odoo applications have different purposes
and UIs. These apps do not share common code, so there are some cases in which we want
to load some assets, but we don't want to do so for all cases. It is not a good practice to
load unnecessary static assets on a page. To avoid loading extra assets in all applications,
Odoo uses the concept of asset bundles. The job of an asset bundle is to combine all the
JavaScript and CSS in a single file and reduce its size by minimizing it. There are asset
bundles in the Odoo code base and also different asset bundles for different code bases.

Managing static assets 431

Here are the different asset bundles used in Odoo:

• web.assets_common: This asset bundle includes all the basic utilities that are
common to all applications, such as jQuery, Underscore.js, Font Awesome, and
so on. This asset bundle is used in the frontend (website), backend, Point of Sale,
reports, and so on. This common asset is loaded almost everywhere in Odoo. It also
contains the boot.js file, which is used for the Odoo module system.

• web.assets_backend: This asset bundle is used in the backend of Odoo (the
Enterprise Resource Planning (ERP) part). It contains all of the code related to the
web client, views, field widgets, the action manager, and so on.

• web.assets_frontend or website.assets_frontend: This asset bundle
is used in the frontend of Odoo (the website part). It contains all the code related
to website-side applications, such as e-commerce, blogs, online events, forums, live
chat, and so on. Note that this asset bundle does not contain code related to website
editing or the drag-and-drop feature (the website builder). The reason behind this is
that we don't want to load editor assets for the public use of the website.

• website.assets_editor and web_editor.summernote: This asset bundle
contains code related to website-editing snippet options and the drag-and-drop
feature (the website builder). It is loaded on a website only if the user has editing
rights. It is also used in the mass-mailing designer.

• web.report_assets_common: QWeb reports are just PDF files generated from
HTML. This asset is loaded in the report layout.

Important information
There are some other asset bundles used for specific applications: point_
of_sale.assets, survey.survey_assets, mass_mailing.
layout, and website_slides.slide_embed_assets.

432 CMS Website Development

Odoo manages its static assets through the AssetBundle class, which is located
at /odoo/addons/base/models/assetsbundle.py. Now, AssetBundle
not only combines multiple files; it is also packed with more features. Here is the list of
features it provides:

• It combines multiple JavaScript and CSS files.

• It minifies the JavaScript and CSS files by removing comments, extra spaces, and
carriage returns from the file content. Removing this extra data will reduce the size
of static assets and improve the page loading speed.

• It has built-in support for CSS preprocessors, such as SCSS and LESS. This means
you can add SCSS and LESS files and they will automatically be compiled and will
get added to the bundle.

Custom assets
As we have seen, Odoo has different assets for different code bases. To get the right result,
you will need to choose the right asset bundle in which to place your custom JavaScript
and CSS files. For example, if you are designing a website, you need to put your file in
web.assets_frontend. Although it is rare, sometimes, you need to create a whole
new asset bundle. You can create your own asset bundle, as we will describe in the
following section.

How to do it...
Follow these steps to create a custom assets bundle:

1. Create the QWeb template and add your JavaScript, CSS, or SCSS files there, as
follows:

<template id="my_custom_assets" name="My Custom Assets">
 <link rel="stylesheet" type="text/scss"
 href="/my_module/static/src/scss/my_scss.
scss"/>
 <link rel="stylesheet" type="text/css"
 href="/my_module/static/src/scss/my_css.css"/>
 <script type="text/JavaScript"
 src="/my_module/static/src/js/widgets/my_
JavaScript.js"/>
</template>

Managing static assets 433

2. Use t-call-assets in the QWeb template where you want to load this bundle,
as follows:

<template id="some_page">
...
<head>
 <t t-call-assets="my_module.my_custom_assets"
t-js="false"/>
 <t t-call-assets="my_module.my_custom_assets"
t-css="false"/>
</head>
...

How it works...
In step 1, we created the new QWeb template with the my_custom_assets external
ID. In this template, you will need to list all of your CSS, SCSS, and JavaScript files. First,
Odoo will compile the SCSS files into CSS, then Odoo will combine all CSS and JavaScript
files into an individual CSS and JavaScript file.

After declaring the assets, you need to load them into the QWeb template (web page). In
step 2, we have loaded the CSS and JavaScript assets in the template. The t-css and t-js
attributes are only used to load style sheets or scripts.

Important information
In most website development, you will need to add your JavaScript and CSS
files in existing asset bundles. Adding a new asset bundle is very rare. It is only
required when you want to develop pages/apps without Odoo CMS features.
In the next recipe, you will learn about adding custom CSS/JavaScript to an
existing asset bundle.

There's more...
The following are a few things you need to know if you are working with assets in Odoo.

Debugging JavaScript can be very hard in Odoo because AssetBundle merges multiple
JavaScript files into a single file and also minifies them. By enabling developer mode with
assets, you can skip asset bundling, and the page will load static assets separately so that
you can debug easily.

434 CMS Website Development

Combined assets are generated once and stored in the ir.attachment model. After
that, they are served from the attachment. If you want to regenerate assets, you can do so
from the debug options, as shown in the following screenshot:

Figure 14.1 – Option to regenerate assets

Tip
As you know, Odoo will generate the asset only once. This behavior can be
a headache during development, as it requires frequent server restarts. To
overcome this issue, you can use dev=xml in the command line, which will
load assets directly, so there will be no need for a server restart.

In the next recipe, you will see how you can include custom CSS/JavaScript in an existing
asset bundle.

Adding CSS and JavaScript for a website 435

Adding CSS and JavaScript for a website
In this recipe, we'll cover how to add CSS and JavaScript to a website.

Getting ready
We will be using the my_library module from Chapter 3, Creating Odoo Add-On
Modules, for this recipe. You can use the initial module from the https://github.
com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-
Edition/tree/master/Chapter14/00_initial_module/my_library
GitHub repository. We will add CSS, SCSS, and JavaScript files, which will modify the
website. As we are modifying the website, we will need to add website as a dependency.
Modify the manifest file like this:

...
 'depends': ['base', 'website'],
...

How to do it...
Override the main website template to inject your code, as follows:

1. Add a file called views/templates.xml and add an empty view override, as
follows (don't forget to list the file in __manifest__.py):

<odoo>

 <template id="assets_frontend"
 inherit_id="web.assets_frontend">

 <xpath expr="." position="inside">

 <!-- points 2 & 3 go here /-->

 </xpath>

 </template>

</odoo>

2. Add the references of the CSS and SCSS files, as follows:

<link href="/my_library/static/src/css/my_library.css"
 rel="stylesheet"
 type="text/css"/>
<link href="/my_library/static/src/scss/my_library.scss"
 rel="stylesheet"
 type="text/scss"/>

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter14/00_initial_module/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter14/00_initial_module/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter14/00_initial_module/my_library

436 CMS Website Development

3. Add a reference to your JavaScript file, as follows:

<script src="/my_library/static/src/js/my_library.js"
 type="text/javascript" />

4. Add some CSS code to static/src/css/my_library.css, as follows:

body main {
 background: #b9ced8;
}

5. Add some SCSS code to static/src/scss/my_library.scss, as follows:

$my-bg-color: #1C2529;
$my-text-color: #D3F4FF;

nav.navbar {
 background-color: $my-bg-color !important;
 .navbar-nav .nav-link span{
 color: darken($my-text-color, 15);
 font-weight: 600;
 }
}

footer.o_footer {
 background-color: $my-bg-color !important;
 color: $my-text-color;
}

6. Add some JavaScript code to static/src/js/my_library.js, as follows:

odoo.define('my_library', function (require) {
 var core = require('web.core');

 alert(core._t('Hello world'));
 return {
 // if you created functionality to export, add it
here
 }
});

After updating your module, you should see that the Odoo website has custom colors in
the menu, body, and footer, and a somewhat annoying Hello World popup on each page
load, as shown in the following screenshot:

Adding CSS and JavaScript for a website 437

Figure 14.2 – Website page after adding custom CSS, SCSS, and JavaScript

How it works...
At the base of Odoo's CMS lies an XML templating engine called QWeb, which will be
discussed in detail in the next recipe. Asset bundles are just created with such QWeb
templates. In steps 1, 2, and 3, we have listed our style sheets and JavaScript file in web.
assets_frontend by extending it. We have chosen web.assets_frontend
because we want to update the website. These assets are loaded for every website page.

In step 4, we have added CSS, which sets the body background color of the website.

Tip
For CSS/SCSS files, sometimes, order matters. So, if you need to override a style
defined in another add-on, you will have to ensure that your file is loaded after
the original file you want to modify. This can be done by either adjusting your
view's priority field or directly inheriting from the add-on's view that injects
the reference to the CSS file. For details, refer to the Changing the existing
views – view inheritance recipe in Chapter 9, Backend Views.

438 CMS Website Development

In step 5, we have added basic SCSS. Odoo has built-in support for the SCSS preprocessor.
Odoo will automatically compile SCSS files into CSS. In our example, we have used basic
SCSS with some variables and the darken function to make $my-text-color darker
by 15%. The SCSS preprocessor has tons of other features; if you want to learn more about
SCSS, refer to http://sass-lang.com/.

In step 6, we have added basic JavaScript, which just shows the alert message when
the page is loaded. To avoid ordering issues with JavaScript, Odoo uses a mechanism
very similar to RequireJS (http://requirejs.org). In our JavaScript file, we called
odoo.define(), which needs two arguments: the namespace you want to define and a
function that contains the actual implementation. If you're developing a complex product
that uses JavaScript extensively, then you can divide the code into logically different
parts and define them in different functions. This will be very useful because you can
reuse functions by importing them via require. Also, to define the namespace of your
module, add your add-on's name, making it prepended and separated by dots to avoid
naming conflicts in the future. This is what the web module does, which defines, among
other things, web.core and web.data.

With the second argument, the definition function receives only one parameter,
require, which is a function you can use to obtain references to JavaScript namespaces
defined in other modules. Use this for all interactions with Odoo, and never rely on the
global odoo object.

Your own function can then return an object pointing to the references you want to
make available for other add-ons, or nothing, if there are no such references. If you have
returned some references from your function, you can use them in another function, as
shown in the following example:

odoo.define('my_module', function (require) {
 var test = {
 key1: 'value1',
 key2: 'value2'
 };
 var square = function(number) {
 return 2*2;
 };

 return {
 test: test,
 square: square
 }
});

// In another file

http://sass-lang.com/
http://requirejs.org

Creating or modifying templates – QWeb 439

odoo.define('another_module', function (require) {
 var my_module = require('my_module');

 console.log(my_module.test.key1);
 console.log('square of 5 is', my_module.square(5));

});

There's more...
To improve performance, Odoo only loads minimal JavaScript for the frontend. All
other JavaScript from the assets will be loaded lazily once the page is fully loaded and
the minimal assets available have the web. assets_frontend_minimal_js ID.

Creating or modifying templates – QWeb
We'll add website capabilities to the my_library add-on developed in Chapter 4,
Application Models. What we're interested in is allowing users to browse through the
library and, if they are logged in with the appropriate permissions, enabling them to edit
book details right from the website interface.

Getting ready
For this recipe, we will be using my_library from the https://github.com/
PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/
tree/master/Chapter14/00_initial_module/my_library directory from
the GitHub repository of this book.

How to do it...
We'll need to define the following couple of controllers and views:

1. Add a controller that serves the list of books in controllers/main.py, as
follows:

from odoo import http
from odoo.http import request

class Main(http.Controller):
 @http.route('/books', type='http', auth="user",
website=True)
 def library_books(self):
 return request.render(

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter14/00_initial_module/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter14/00_initial_module/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter14/00_initial_module/my_library

440 CMS Website Development

 'my_library.books', {
 'books': request.env['library.book'].
search([]),
 })

2. Add a minimal template in views/templates.xml, as follows (make sure you
have added the views/templates.xml file in the manifest):

<?xml version="1.0" encoding="utf-8"?>
<odoo>

<template id="books">
 <t t-call="website.layout">
 <!-- Add page elements here -->
 </t>
</template>

</odoo>

3. Inside website.layout, add the droppable element with the oe_structure
class, as follows:

<div class="oe_structure">
 <section class="pt32 pb32 bg-secondary oe_custom_bg">
 <div class="container text-center">
 <h1> Editable text and supports drag and
drop.</h1>
 </div>
 </section>
</div>

4. Append the code block to website.layout to display the books' information, as
follows:

<div class="container">
 <t t-foreach="books" t-as="book">
 <div t-attf-class="card mt-3 #{'bg-info' if book_
odd else ''}">
 <div class="card-body" id="card_body">
 <h3 t-field="book.name"/>
 <t t-if="book.date_release">
 <div t-field="book.date_release"
 class="text-muted"/>
 </t>
 <b class="mt8"> Authors

Creating or modifying templates – QWeb 441

 <li t-foreach="book.author_ids"
 t-as="author">

 </div>
 </div>
 </t>
</div>

5. Append a non-editable element into website.layout, as follows:

 <section class="container mt16" contenteditable="False">
 This is a non-editable text after the list of
books.
 </section>

Open http://your-server-url:8069/books in a browser and you will be able
to see a list of books, with authors. With this code, a user can see a list of books and their
details. Given the appropriate permissions, users will also be able to change the book
details and other text.

How it works...
In step 1, we have a controller to pass custom values. These custom values will be passed
from the controller to the QWeb template.

In the following steps (2, 3, 4, 5), we created a template called books that is used to
generate the HTML code necessary to display a list of books. All of the code is wrapped in
a t element with the t-call attribute set, which makes Odoo render the page with the
website.layout template and insert our content inside the template. The website.
layout template includes all of the required utilities, such as Bootstrap, jQuery, Font
Awesome, and so on. These utilities are used for designing the web page. website.
layout also includes the default header, footer, snippets, and page editing functionalities.
This way, we get a full Odoo web page with the menus, footer, and page editing features,
without having to repeat the code in all pages. If you don't use t-call="website.
layout", you will not get the default header, footers, and website editing features.

In steps 3, 4, and 5, we have added HTML with some QWeb template attributes inside
website.layout. This HTML code will be used to display a list of books. Let's take
a look at different QWeb attributes and their usage.

442 CMS Website Development

Loops
To work on recordsets or iterable data types, you need a construct to loop through lists. In
the QWeb template, this can be done with the t-foreach element. Iteration can happen
in a t element, in which case its contents are repeated for every member of the iterable
that was passed in the t-foreach attribute, as follows:

<t t-foreach="[1, 2, 3, 4, 5]" t-as="num">
 <p><t t-esc="num"/></p>
</t>

This will be rendered as follows:

<p>1</p>
<p>2</p>
<p>3</p>
<p>4</p>
<p>5</p>

You can also place the t-foreach and t-as attributes in some arbitrary element, at
which point this element and its contents will be repeated for every item in the iterable.
Take a look at the following code block. This will generate exactly the same result as the
previous example:

<p t-foreach="[1, 2, 3, 4, 5]" t-as="num">
 <t t-esc="num"/>
</p>

In our example, take a look at the inside of the t-call element, where the actual content
generation happens. The template expects to be rendered with a context that has a variable
called books set that iterates through it in the t-foreach element. The t-as attribute
is mandatory and will be used as the name of the iterator variable, to access the iterated
data. While the most common use for this construction is to iterate over recordsets, you
can use it on any Python object that is iterable.

Within t-foreach loops, you've got access to a couple of extra variables, whose names
are derived from the accompanying t-as attribute. As it is book in the preceding
example, we have access to the book_odd variable, which contains the value True for
odd indices while iterating and False for even ones. In this example, we used this to be
able to have alternating background colors for our cards.

Creating or modifying templates – QWeb 443

The following are other available variables:

• book_index, which returns the current (zero-based) index in the iteration.

• book_first and book_last, which are True if this is the first or last iteration,
respectively.

• book_value, which would contain the item's value if the book variable we iterate
over were a dictionary; in this case, book would iterate through the dictionary's
keys.

• book_size, which is the size of the collection (if available).

• book_even and book_odd get true values, based on the iteration index.

• book_parity contains the even value for even indices while iterating, and odd
for odd ones.

Important note
The examples here are based on our scenario. In your case, you need to replace
book with the value given for the t-as attribute.

Dynamic attributes
QWeb templates can set attribute values dynamically. This can be done in the following
three ways.

The first way is through t-att-$attr_name. At the time of template rendering, an
attribute, $attr_name, is created; its value can be any valid Python expression. This is
computed with the current context and the result is set as the value of the attribute, like
this:

<div t-att-total="10 + 5 + 5"/>

It will be rendered like this:

<div total="20"></div>

444 CMS Website Development

The second way is through t-attf-$attr_name. This is similar to the previous option.
The only difference is that only strings between {{ ..}} and #{..} are evaluated. This
is helpful when values are mixed with the strings. It is mostly used to evaluate classes, as in
this example:

<t t-foreach="['info', 'danger', 'warning']" t-as="color">
 <div t-attf-class="alert alert-#{color}">
 Simple bootstrap alert
 </div>
</t>

It will be rendered like this:

<div class="alert alert-info">
 Simple bootstrap alert
</div>
<div class="alert alert-danger">
 Simple bootstrap alert
</div>
<div class="alert alert-warning">
 Simple bootstrap alert
</div>

The third way is through the t-att=mapping option. This option accepts the dictionary
after the template rendering the dictionary's data is converted into attributes and values.
Take a look at the following example:

<div t-att="{'id': 'my_el_id', 'class': 'alert alert-
danger'}"/>

After rendering this template, it will be converted into the following:

<div id="my_el_id" class="alert alert-danger"/>

In our example, we have used t-attf-class to get a dynamic background based on
index values.

Creating or modifying templates – QWeb 445

Fields
The h3 and div tags use the t-field attribute. The value of the t-field attribute
must be used with the recordset with a length of one; this allows the user to change
the content of the web page when they open the website in edit mode. When you save
the page, updated values will be stored in the database. Of course, this is subject to a
permission check and is only allowed if the current user has write permissions for the
displayed record. With an optional t-options attribute, you can give a dictionary
option to be passed to the field renderer, including the widget to be used. Currently, there
is not a vast collection of widgets for the backend, so the choices are a bit limited here. For
example, if you want to display an image from the binary field, then you can use the image
widget like this:

<span t-field="author.image_small" t-options="{'widget':
'image'}"/>

t-field has some limitations. It only works on recordsets and it cannot work on the
<t> element. For this, you need to use some HTML elements, such as or <div>.
There is an alternative to the t-field attribute, which is t-esc. The t-esc attribute is
not limited to recordsets; it can also be used on any data types, but it is not editable in a
website.

Another difference between t-esc and t-field is that t-field shows values based
on the user's language, while t-esc shows raw values from the database. For example,
for users who configured the English language in their preferences and set the datetime
field as used with t-field, the result will be rendered in 12/15/2018 17:12:13
format. In contrast, if the t-esc attribute is used, then the result will be in a rendered
format like this: 2018-12-15 16:12:13.

Conditionals
Note that the division showing the publication date is wrapped by a t element with the
t-if attribute set. This attribute is evaluated as Python code, and the element is only
rendered if the result is a truthy value. In the following example, we only show the div
class if there is actually a publication date set. However, in complex cases, you can use
t-elif and t-else as in the following example:

<div t-if="state == 'new'">
 Text will be added of state is new.
</div>
<div t-elif="state == 'progress'">
 Text will be added of state is progress.
</div>

446 CMS Website Development

<div t-else="">
 Text will be added for all other stages.
</div>

Setting variables
The QWeb template is also capable of defining the variable in the template itself. After
defining the template, you can use the variable in the subsequent template. You can set the
variable like this:

<t t-set="my_var" t-value="5 + 1"/>
<t t-esc="my_var"/>

Subtemplates
If you are developing a big application, managing large templates can be difficult. The
QWeb template supports subtemplates, so you can divide large templates into smaller
subtemplates and you can reuse them in multiple templates. For subtemplates, you can use
a t-call attribute, like in this example:

<template id="first_template">
 <div> Test Template </div>
</template>

<template id="second_template">
 <t t-call="first_template"/>
</template>

Inline editing
The user will be able to modify records directly from the website in edit mode. The data
loaded with the t-field node will be editable by default. If the user changes the value
in such a node and saves the page, the values will also be updated in the backend. Don't
worry; in order to update the record, a user will need write permissions on the record.
Note that t-field only works on a recordset. To display other types of data, you can use
t-esc. This works exactly like t-field, but the only difference is that t-esc is not
editable and can be used with any type of data.

If you want to enable snippet drag-and-drop support on the page, you can use the
oe_structure class. In our example, we have added this at the top of the template.
Using oe_structure will enable editing and snippet drag-and-drop support.

Creating or modifying templates – QWeb 447

If you want to disable the website editing feature on a block, you can use the
contenteditable=False attribute. This makes an element read-only. In step 5, we
have used this attribute in the last <section> tag.

Note
To make the page multi-website-compatible, when you edit a page/view
through the website editor, Odoo will create a separate copy of the page for
that website. This means that subsequent code updates will never make it to
the edited website page. In order to also get the ease of use of inline editing and
the possibility of updating your HTML code in subsequent releases, create one
view that contains the semantic HTML elements and a second one that injects
editable elements. Then, only the latter view will be copied, and you can still
have updates for the parent view.

For the other CSS classes used here, consult Bootstrap's documentation, as linked in this
recipe's See also section.

In step 1, we have declared the route to render the template. If you noticed, we have
used the website=True parameter in route(), which will pass some extra context
in the template, such as menus, user language, company, and so on. This will be used in
website.layout to render the menus and footers. The website=True parameter
also enables multilanguage support in a website. It also displays exceptions in a better way.

At the function end, we returned the result by rendering the template; we then passed the
recordset of all books that are being used in the template.

There's more...
To modify existing templates, you can use the inherit_id attribute on the template and
then use an xpath element like view inheritance. For example, we want to display the
count of authors near the Authors label by inheriting the books template. We can do
this in the following way:

<template id="books_ids_inh" inherit_id="my_library.books">
 <xpath expr="//div[@id='card_body']/b" position="replace">
 <b class="mt8"> Authors (<t t-esc="len(book.author_
ids)"/>)
 </xpath>
</template>

448 CMS Website Development

Inheritance works exactly like views, because internally, QWeb templates are normal
views with the qweb type. The template element is shorthand for a record element
that sets some properties on the record for you. While there's never a reason to not use
the convenience of the template element, you should know what happens under the
hood: the element creates a record of the ir.ui.view model with the qweb type.
Then, depending on the template element's name and inherit_id attributes, the
inherit_id field on the view record will be set.

In the next recipe, we will learn about managing dynamic routes to handle dynamic URLs.

See also
Refer to the following to design QWeb templates effectively:

• Odoo, as a whole, makes extensive use of Bootstrap (http://getbootstrap.
com), which you should use to get adaptive designs without much effort.

• For details on view inheritance, take a look at the Changing the existing views – view
inheritance recipe in Chapter 9, Backend Views.

• For a more in-depth discussion of controllers, refer to the Making a path accessible
from the network and Restricting access to web-accessible paths recipes in Chapter 13,
Web Server Development.

• For more information about updating existing routes, refer to the Modifying an
existing handler recipe in Chapter 13, Web Server Development.

Managing dynamic routes
In website development projects, it is often the case that we need to create pages with
dynamic URLs. For example, in e-commerce, each product has a detailed page linked with
a different URL. In this recipe, we will create a web page to display the book details.

Getting ready
We will be using the my_library module from the previous recipe. To make a book
detail page attractive, we will need to add a few new fields. Please add the following two
new fields in the library.book model and form a view, like this:

class LibraryBook(models.Model):
 _name = 'library.book'

 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')

http://getbootstrap.com
http://getbootstrap.com

Managing dynamic routes 449

 author_ids = fields.Many2many('res.partner',
string='Authors')
 image = fields.Binary(attachment=True)
 html_description = fields.Html()

If you want, add these fields into the form view. Anyway, you will also be able to edit it
from the web page itself.

How to do it...
Follow these steps to generate a details page for books:

1. Add a new route for book details in main.py, as follows:

@http.route('/books/<model("library.book"):book>',
type='http', auth="user", website=True)
def library_book_detail(self, book):
 return request.render(
 'my_library.book_detail', {
 'book': book,
 })

2. Add a new template for book details in templates.xml, as follows:

<template id="book_detail" name="Books Detail">
 <t t-call="website.layout">
 <div class="container">
 <div class="row mt16">
 <div class="col-5">
 <span t-field="book.image"
t-options="{
 'widget': 'image',
 'class': 'mx-auto d-block
img-thumbnail'}"/>
 </div>
 <div class="offset-1 col-6">
 <h1 t-field="book.name"/>
 <t t-if="book.date_release">
 <div t-field="book.date_release"
 class="text-muted"/>
 </t>
 <b class="mt8"> Authors

 <li t-foreach="book.author_ids"
t-as="author">

450 CMS Website Development

 </div>
 </div>
 </div>
 <div t-field="book.html_description"/>
 </t>
</template>

3. Add a button in the book list template, as follows. This button will redirect to the
book details web page:

...
<div t-attf-class="card mt24 #{'bg-light' if book_odd
else ''}">
 <div class="card-body">
 <h3 t-field="book.name"/>
 <t t-if="book.date_release">
 <div t-field="book.date_release" class="text-
muted"/>
 </t>
 <b class="mt8"> Authors

 <li t-foreach="book.author_ids"
t-as="author">

 <a t-attf-href="/books/#{book.id}" class="btn
btn-primary btn-sm">
 <i class="fa fa-book"/> Book Detail

 </div>
</div>
...

Update the my_library module to apply changes. After the update, you will see book
details page links on the book card. Upon clicking those links, the book detail pages will
open.

Managing dynamic routes 451

How it works...
In the first step, we created a dynamic route for the book details page. In this route, we
added <model("library.book"):book>. This accepts URLs with integers, as in
/books/1. Odoo considers this integer as the ID of the library.book model, and
when this URL is accessed, Odoo fetches a recordset and passes it to the function as the
argument. So, when /books/1 is accessed from the browser, the book parameter in
the library_book_detail() function will have a recordset of the library.book
model with the ID 1. We passed this book recordset and rendered a new template called
my_library.book2_detail.

In the second step, we created a new QWeb template called book_detail to render a
book details page. This is simple and is created using the Bootstrap structure. If you check,
we have added html_description in the detail page. The html_description field
has a field type of HTML, so you can store HTML data in the field. Odoo automatically
adds the snippet drag-and-drop support to the HTML types of fields. So, now we are able
to use snippets in the book details page. The snippets dropped in the HTML fields are
stored in a book's records, so you can design different content for different books.

In the last step, we added a link with the anchor tag so that a visitor can be redirected to
the book details page.

Note
The model route also supports domain filtering. For example, if you want to
restrict some books based on a condition, you can do so by passing the domain
to the route as follows:

/books/<model("library.book", "[(name','!=', 'Book
1')]"):team>/submit

This will restrict access to the books that have the name Book 1.

There's more...
Odoo uses werkzeug to handle HTTP requests. Odoo adds a thin wrapper around
werkzeug to easily handle routes. You saw the <model("library.book"):book>
route in the last example. This is Odoo's own implementation, but it also supports all
features from the werkzeug routing. Consequently, you can use routing like this:

• /page/<int:page> accepts integer values.

• /page/<any(about, help):page_name> accepts selected values.

452 CMS Website Development

• /pages/<page> accepts strings.

• /pages/<category>/<int:page> accepts multiple values.

There are lots of variations available for the routes, which you can read about at http://
werkzeug.pocoo.org/docs/0.14/routing/.

Offering static snippets to the user
Odoo's website editor offers several editing building blocks, which can be dragged onto
the page and edited according to your needs. This recipe will cover how to offer your
own building blocks. These blocks are referred to as snippets. There are several types of
snippets, but in general, we can categorize them into two types: static and dynamic. The
static snippet is fixed and does not change until the user changes it. Dynamic snippets
depend on database records and are changed based on record values. In this recipe, we
will see how to create a static snippet.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
A snippet is actually just a QWeb view that gets injected into the Insert blocks bar. We
will create a small snippet that will show the book's image and book title. You will be able
to drag and drop the snippet on the page and you will be able to edit the image and text.
Follow these steps to add a new static snippet:

1. Add a file called views/snippets.xml, as follows (do not forget to register the
file in the manifest):

<?xml version="1.0" encoding="UTF-8"?>

<odoo>

<!-- Step 2 and 3 comes here -->

</odoo>

2. Add a QWeb template for the snippet in views/snippets.xml, as follows:

<template id="snippet_book_cover" name="Book Cover">

 <section class="pt-3 pb-3">

 <div class="container">

http://werkzeug.pocoo.org/docs/0.14/routing/
http://werkzeug.pocoo.org/docs/0.14/routing/

Offering static snippets to the user 453

 <div class="row align-items-center">

 <div class="col-lg-6 pt16 pb16">

 <h1>Odoo 12 Development Cookbook</h1>

 <p>

 Learn with Odoo development
 quicky with examples

 </p>

 Book Details

 </div>

 <div class="col-lg-6 pt16 pb16">

 <img
 src="/my_library/static/src/img/
cover.jpeg"
 class="mx-auto img-thumbnail w-50
img img-fluid shadow"/>

 </div>

 </div>

 </div>

 </section>

</template>

3. List the template in the snippet list like this:

<template id="book_snippets_options" inherit_id="website.
snippets">

 <xpath expr="//div[@id='snippet_structure']/
div[hasclass('o_panel_body')]" position="inside">

 <t t-snippet="my_library.snippet_book_cover"
 t-thumbnail="/my_library/static/src/img/s_book_
thumb.png"/>

 </xpath>

</template>

4. Add the cover image and snippet thumbnail image in the /my_library/
static/src/img directory.

454 CMS Website Development

Restart the server and update the my_library module to apply the changes. When you
open the website page in edit mode, you will be able to see our snippet in the snippets
blocks panel.

How it works...
The static snippet is nothing but a block of HTML code. In step 1, we created a QWeb
template with our HTML for the book block. In this HTML, we have just used a Bootstrap
column structure, but you can use any HTML code. Note that the HTML code you add
in the snippet's QWeb template will be added to the page when you drag and drop. In
general, it is a good idea to use section elements and Bootstrap classes for snippets,
because for them, Odoo's editor offers edit, background, and resize controls out of the
box.

In step 2, we registered our snippet in the snippet list. You will need to inherit website.
snippets to register a snippet. In the website editor GUI, snippets are divided into
different sections based on their usage. In our example, we have registered our snippet
in the Structure section via xpath. To list your snippet, you need to use a <t> tag with
the t-snippet attribute. The t-snippet attribute will have the XML ID of the QWeb
template, which is my_library.snippet_book_cover in our example. You will also
need to use the t-thumbnail attribute, which is used to show a small snippet image in
the website editor.

Note
The website.snippets template contains all the default snippets,
and you can learn more about it by exploring the /addons/website/
views/snippets/snippets.xml file.

Odoo will add some default options to your snippets when you have a proper Bootstrap
structure. For example, in our snippet, you would be able to set a background color,
a background image, width, height, and so on. Explore the /addons/website/views/
snippets/snippets.xml file to see all the snippet options. In the next recipe,
we will see how to add our own options.

In step 3, we have listed our snippet under the structure block. Once you update the
module, you will be able to drag and drop the snippet. In step 4, we have just added an
image for the snippet thumbnail.

Offering dynamic snippets to the user 455

There's more...
In such cases, there will be no need for extra JavaScript. Odoo's editor offers lots of
options and controls out of the box, and they are more than enough for static snippets.
You will find all existing snippets and options at website/views/snippets.xml.

Snippet options also support the data-exclude, data-drop-near, and data-
drop-in attributes, which determine where a snippet can be placed when dragging it out
of the snippet bar. These are also jQuery selectors, and in step 3 of this recipe, we didn't
use them, because we allow putting the snippet basically anywhere that content can go.

Offering dynamic snippets to the user
In this recipe, we will see how we can create dynamic snippets for Odoo. We will generate
content based on database values.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
Perform the following steps to add a dynamic snippet that shows a list of books:

1. Add a given QWeb template for the snippet in views/snippets.xml:

 <template id="snippet_book_dynamic" name="Latest Books">

 <section class="book_list">

 <div class="container">

 <h2>Latest books</h2>

 <table class="table book_snippet table-
striped"
 data-number-of-books="5">

 <tr>

 <th>Name</th>

 <th>Release date</th>

 </tr>

 </table>

 </div>

 </section>

</template>

456 CMS Website Development

2. Register the snippet and add an option to change the snippet behavior:

<template id="book_snippets_options"

 inherit_id="website.snippets">

 <!-- register snippet -->

 <xpath expr="//div[@id='snippet_structure']/

 div[hasclass('o_panel_body')]"

 position="inside">

 <t t-snippet="my_library.snippet_book_dynamic"

 t-thumbnail="/my_library/static/src/img/s_
list.png"/>

 </xpath>

 <xpath expr="//div[@id='snippet_options']"
position="inside">

 <!—Add step 3 here -->

 </xpath>

</template>

3. Then, add the snippet options for the book snippet:

<div data-selector=".book_snippet">

 <we-select string="Table Style">

 <we-button data-select-class="table-striped">

 Striped

 </we-button>

 <we-button data-select-class="table-dark">

 Dark

 </we-button>

 <we-button data-select-class="table-bordered">

 Bordered

 </we-button>

 </we-select>

 <we-button-group string="No of Books"

 data-attribute-name="numberOfBooks">

 <we-button data-select-data-attribute="5">

 5

 </we-button>

Offering dynamic snippets to the user 457

 <we-button data-select-data-attribute="10">

 10

 </we-button>

 <we-button data-select-data-attribute="15">

 15

 </we-button>

 </we-button-group>

</div>

4. Add a new /static/src/snippets.js file and add code to render a dynamic
snippet:

 odoo.define('book.dynamic.snippet', function (require) {

'use strict';

var publicWidget = require('web.public.widget');

// Add step 5 here

});

5. Add a public widget to render the book snippet dynamically:

publicWidget.registry.books = publicWidget.Widget.
extend({

 selector: '.book_snippet',

 disabledInEditableMode: false,

 start: function () {

 var self = this;

 var rows = this.$el[0].dataset.numberOfBooks ||
'5';

 this.$el.find('td').parents('tr').remove();

 this._rpc({

 model: 'library.book',

 method: 'search_read',

 domain: [],

 fields: ['name', 'date_release'],

 orderBy: [{ name: 'date_release', asc: false
}],

458 CMS Website Development

 limit: parseInt(rows)

 }).then(function (data) {

 _.each(data, function (book) {

 self.$el.append(

 $('<tr />').append(

 $('<td />').text(book.name),

 $('<td />').text(book.date_
release)

));

 });

 });

 },

});

});

6. Add the JavaScript file to the module:

 <template id="assets_frontend"
 inherit_id="website.assets_frontend">

 <xpath expr="." position="inside">

 <script src="/my_library/static/src/js/
snippets.js"
 type="text/javascript" />

 </xpath>

 </template>

After updating the module, you will be offered a new snippet called Latest books, which
has an option to change the number of recently added books. We have also added the
option to change the table design, which can be displayed when you click on the table.

How it works...
In the first step, we added a QWeb template for the new snippet (it is just like the previous
recipe). Note that we have added a basic structure for the table. We will dynamically add
lines for books in the table.

Offering dynamic snippets to the user 459

In the second step, we have registered our dynamic snippet, and we have added custom
options to change the behavior of our dynamic snippet. The first option we have added
is Table Style. It will be used to change the style of the table. The second option we have
added is No of Books. We have used the <we-select> and <we-button-group>
tags for our options. These tags will provide different GUIs to the snippet option. The
<we-select> tag will show the options as a dropdown while the <we-button-
group> tag will show the options as a button group. There are several other GUI options,
such as <we-checkbox> and <we-colorpicker>. You can explore more GUI options
in the /addons/website/views/snippets/snippets.xml file.

If you look at the options closely, you will see we have data-select-class and
data-select-data-attribute attributes for the option buttons. This will let Odoo
know which attribute to change when the user chooses an option. data-select-
class will set the class attribute on the element when the user chooses this option,
while data-select-data-attribute will set the custom attribute and value on the
element. Note that it will use the value of data-attribute-name to set the attribute.

Now, we have added the snippets and snippet options. If you drag and drop the snippet
at this point, you will only see the table header and the snippet options. Changing the
snippet options will change the table style, but there is no book data yet. For that, we
need to write some JavaScript code that will fetch the data and display it in the table.
In step 3, we have added JavaScript code that will render the book data in the table.
To map a JavaScript object to an HTML element, Odoo uses PublicWidget. Now,
PublicWidget is available through the require('web.public.widget')
module. The key attribute in using PublicWidget is the selector attribute. In the
selector attribute, you will need to use the CSS selector of the element, and Odoo will
automatically bind the element with PublicWidget. You can access the related element
in the $el attribute. The rest of the code is basic JavaScript and jQuery except _rpc. The
_rpc method is used to make network requests and fetch book data. We will learn more
about the _rpc method in the Making RPC calls to the server recipe of Chapter 15, Web
Client Development.

In the last step, we have added a JavaScript file to the assets.

There's more...
If you want to create your own snippet option, you can use the t-js option on the
snippet option. After that, you will need to define your own option in the JavaScript code.
Explore the addons/website/static/src/js/editor/snippets.options.
js file to learn more about snippet options.

460 CMS Website Development

Getting input from website users
In website development, often you need to create forms to take input from the website
users (visitors). In this recipe, we will create an HTML form for the page for users to
report issues related to books.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. We
will need a new model to store issues submitted by users.

So, before starting this recipe, modify the previous code:

1. Add a field in the library.book model and the new book.issues model, as
follows:

class LibraryBook(models.Model):
 _name = 'library.book'

 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')
 author_ids = fields.Many2many('res.partner',
string='Authors')
 image = fields.Binary(attachment=True)
 html_description = fields.Html()
 book_issue_id = fields.One2many('book.issue', 'book_
id')

class LibraryBookIssues(models.Model):
 _name = 'book.issue'

 book_id = fields.Many2one('library.book',
required=True)
 submitted_by = fields.Many2one('res.users')
 isuue_description = fields.Text()

2. Add a book_issues_id field in the book form view, as follows:

...
<group string="Book Issues">
 <field name="book_issue_id" nolabel="1">
 <tree>
 <field name="create_date"/>
 <field name="submitted_by"/>

Getting input from website users 461

 <field name="isuue_description"/>
 </tree>
 </field>
</group>
...

3. Add access rights for the new book.issue model in the ir.model.access.
csv file, as follows:

acl_book_issues,library.book_issue,model_book_
issue,group_librarian,1,1,1,1

We have added a new model for the book issues, and now, we will add a new template
with an HTML form.

How to do it...
Follow these steps to create a new route and template page for the issue page:

1. Add a new route in main.py, as follows:

@http.route('/books/submit_issues', type='http',
auth="user", website=True)
def books_issues(self, **post):
 if post.get('book_id'):
 book_id = int(post.get('book_id'))
 issue_description = post.get('issue_description')
 request.env['book.issue'].sudo().create({
 'book_id': book_id,
 'issue_description': issue_description,
 'submitted_by': request.env.user.id
 })
 return request.redirect('/books/submit_
issues?submitted=1')

 return request.render('my_library.books_issue_form',
{
 'books': request.env['library.book'].search([]),
 'submitted': post.get('submitted', False)
 })

2. Add a template with an HTML form in it, as follows:

<template id="books_issue_form" name="Book Issues Form">
 <t t-call="website.layout">

462 CMS Website Development

 <div class="container mt32">
 <!-- add the page elements here(step 3 and 4)
-->
 </div>
 </t>
</template>

3. Add the conditional header for the page, as follows:

 <t t-if="submitted">
 <h3 class="alert alert-success mt16 mb16">
 <i class="fa fa-thumbs-up"/>
 Book submitted successfully
 </h3>
 <h1> Report the another book issue </h1>
 </t>
 <t t-else="">
 <h1> Report the book issue </h1>
 </t>

4. Add <form> to submit the issues as follows:

<div class="row mt16">
 <div class="col-6">
 <form method="post">
 <input type="hidden" name="csrf_token"
 t-att-value="request.csrf_token()"/>
 <div class="form-group">
 <label>Select Book</label>
 <select class="form-control" name="book_
id">
 <t t-foreach="books" t-as="book">
 <option t-att-value="book.id">
 <t t-esc="book.name"/>
 </option>
 </t>
 </select>
 </div>
 <div class="form-group">
 <label>Issue Description</label>
 <textarea name="issue_description"
 class="form-control"
 placeholder="e.g. pages are
missing"/>
 </div>

Getting input from website users 463

 <button type="submit" class="btn
btn-primary">
 Submit
 </button>
 </form>
 </div>
</div>

Update the module and open the /books/submit_issues URL. From this page, you
will be able to submit the issues for the book. After submission, you can check them into
the respective book form view in the backend.

How it works...
In step 1 of this recipe, we created a route to submit book issues. The **post argument in
the function will accept all query parameters in the URL. You will also get the submitted
form data in the **post argument. In our example, we have used the same controller
to display the pages and submit the issue. If we find data in the post, we will create a
new issue in the book.issue model and then redirect the user to the issue page with
the submitted query parameters, so the user can see that the acknowledgment issue is
submitted and can therefore submit another issue if he/she wants.

Note
We have used sudo() to create a book issue record because a normal user
(visitor) does not have access rights to create the new book issue record. This is
despite it being necessary to create the book issue record if a user has submitted
an issue from a web page. This is a practical example of the usage of sudo().

In step 2, we have created the template for the issue page. In step 3, we have added the
conditional headers. The success header will be displayed after submitting an issue.

In step 4, we have added <form> with three fields: csrf_token, book selection, and
issue description. The last two fields are used to get input from the website user. However,
csrf_token is used to avoid a Cross-Site Request Forgery (CSRF) attack. If you do
not use it in the form, the user won't be able to submit the form. When you submit the
form, you will get the submitted data as the **post parameter in the books_issues()
method of step 1.

464 CMS Website Development

Tip
In some cases, if you want to disable csrf validation, you can use
csrf=False in the route, like this:
@http.route('/url', type='http',auth="user",
website=True, csrf=False)

There's more...
If you want, you can use separate routes page, and for the post data, which you can do by
adding action to the form as follows:

...
<form action="/my_url" method="post">
...

Additionally, you can restrict the get requests by adding the method parameter in the
route like this:

@http.route('/my_url', type='http', method='POST' auth="user",
website=True)

Managing SEO options
Odoo provides built-in support for SEO for templates (pages). However, some templates
are used in multiple URLs. For example, in an online shop, product pages are rendered
with the same template and different product data. For these kinds of cases, we want
separate SEO options for each URL.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. We
will store separate SEO data for each book details page. Before developing this recipe, you
should test the SEO options in the different book pages. You can get an SEO dialog from
the Promote drop-down menu on the top, as shown in the following figure:

Figure 14.3 – Opening the SEO configuration for a page

Managing SEO options 465

If you test SEO options in different book details pages, you will notice that changing the
SEO data in one book page will reflect on all book pages. We will fix this issue in this
recipe.

How to do it...
To manage separate SEO options for each book, follow these steps:

1. Inherit the website.seo.metadata mixin in the library.book model, as
follows:

...
class LibraryBook(models.Model):
 _name = 'library.book'
 _inherit = ['website.seo.metadata']

 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')
...

2. Pass the book object in the book details route as main_object, as follows:

...
@http.route('/books/<model("library.book"):book>',
type='http', auth="user", website=True)
def library_book_detail(self, book):
 return request.render(
 'my_library.book_detail', {
 'book': book,
 'main_object': book
 })
...

Update the module and change the SEO on the different book pages. It can be changed
through the Optimize SEO option. Now, you will be able to manage separate SEO details
per book.

How it works...
To enable SEO on each record of the model, you will need to inherit the website.
seo.metadata mixin in your model. This will add a few fields and methods in the
library.book model. These fields and methods will be used from the website to store
separate data for each book.

466 CMS Website Development

Tip
If you want to see fields and methods for the SEO mixin, search for the
website.seo.metadata model in the /addons/website/
models/website.py file.

All SEO-related code is written in website.layout and it gets all the SEO meta-
information from the recordset passed as main_object. Consequently, in step 2, we
have passed a book object with the main_object key, so the website layout will get all
SEO information from the book. If you don't pass main_object from the controller,
then the template recordset will be passed as main_object, and that's why you were
getting the same SEO data in all books.

There's more...
In Odoo, you can add custom metatags for Open Graph and Twitter sharing. If you want
to add your custom metatags to a page, you can override _default_website_meta()
after adding the SEO mixin. For example, if we want to use the book cover as the social
sharing image, then we can use the following code in our book model:

def _default_website_meta(self):

 res = super(LibraryBook, self)._default_website_meta()

 res['default_opengraph']['og:image'] = self.env['website'].
image_url(self, 'image')

 res['default_twitter']['twitter:image'] = self.
env['website'].image_url(self, 'image')

 return res

After this, the book cover will be displayed on social media when you share the book's
URL. Additionally, you can also set the page title and the description from the same
method.

Managing sitemaps for the website
A website's sitemaps are crucial for any website. The search engine will use website
sitemaps to index the pages of a website. In this recipe, we will add book details pages to
the sitemap.

Managing sitemaps for the website 467

Getting ready...
For this recipe, we will be using the my_library module from the previous recipe. If
you want to check the current sitemap in Odoo, open <your_odoo_server_url>/
sitemap.xml in your browser. This will not have the book's URL in it.

How to do it...
Follow these steps to add a book's page to sitemap.xml:

1. Import the methods in main.py, as follows:

from odoo.addons.http_routing.models.ir_http import slug
from odoo.addons.website.models.ir_http import sitemap_
qs2dom

2. Add the sitemap_books method to main.py, as follows:

class Main(http.Controller):
...
 def sitemap_books(env, rule, qs):
 Books = env['library.book']
 dom = sitemap_qs2dom(qs, '/books', Books._rec_
name)
 for f in Books.search(dom):
 loc = '/books/%s' % slug(f)
 if not qs or qs.lower() in loc:
 yield {'loc': loc}
...

3. Add the sitemap_books function reference in a book's detail routes as follows:

...
@http.route('/books/<model("library.book"):book>',
type='http', auth="user", website=True, sitemap=sitemap_
books)
 def library_book_detail(self, book):
...

Update the module to apply the changes. The sitemap.xml file is generated and stored
in attachments. Then, it is regenerated every few hours. To see our changes, you will need
to remove the sitemap file from the attachment. To do this, visit Settings | Technical |
Database Structure | Attachments, search for the sitemap, and delete the file. Now, access
the /sitemap.xml URL in a browser, and you will see the book's pages in the sitemap.

468 CMS Website Development

How it works...
In the first step, we have imported a few required functions. slug is used to generate a
clean, user-friendly URL, based on a record name. sitemap_qs2dom is used to generate
a domain based on route and query strings.

In step 2, we have created a Python generator function, sitemap_books(). This
function will be called whenever a sitemap is generated. During the call, it will receive
three arguments—the env Odoo environment, the rule route rule, and the qs query
string. In the function, we have generated a domain with sitemap_qs2dom. Then, we
used the generated domain to search the book records, which are used to generate the
location through the slug() method. With slug, you will get a user-friendly URL, such
as /books/odoo-12-development-cookbook-1, instead of books/1. If you do
not want to list all the books on the sitemap, you can just use a valid domain in the search
to filter the books.

In step 3, we have passed the sitemap_books() function reference to the route with a
sitemap keyword.

There's more...
In this recipe, we have seen how you can use a custom method to generate a URL for a
sitemap. But if you do not want to filter books and you want to list all books in a sitemap,
then instead of the function reference, just pass True as follows:

...
@http.route('/books/<model("library.book"):book>', type='http',
auth="user", website=True, sitemap=True)
...

Getting a visitor's country information
The Odoo CMS has built-in support for GeoIP. In a live environment, you can track a
visitor's country based on the IP address. In this recipe, we will get the country of the
visitor based on the visitor's IP address.

Getting a visitor's country information 469

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. In
this recipe, we will hide some books on the web page based on the visitor's country. You
will need to download the GeoIP database for this recipe. After that, you will need to pass
the database location from the cli option, like this:

./odoo-bin -c config_file --geoip-db=location_of_geoip_DB

How to do it...
Follow these steps to restrict books based on country:

1. Add the restrict_country_ids Many2many field in the library.book
model, as follows:

class LibraryBook(models.Model):
 _name = 'library.book'
 _inherit = ['website.seo.metadata']

 ...
 restrict_country_ids = fields.Many2many('res.
country')
 ...

2. Add a restrict_country_ids field in the form view of the library.books
model, as follows:

...
<group>
 <field name="date_release"/>
 <field name="restrict_country_ids" widget="many2many_
tags"/>
</group>
...

3. Update the /books controller to restrict books based on country, as follows:

@http.route('/books', type='http', auth="user",
website=True)
def library_books(self):
 country_id = False
 country_code = request.session.geoip and request.
session.geoip.get('country_code') or False
 if country_code:

470 CMS Website Development

 country_ids = request.env['res.country'].sudo().
search([('code', '=', country_code)])
 if country_ids:
 country_id = country_ids[0].id
 domain = ['|', ('restrict_country_ids', '=', False),
('restrict_country_ids', 'not in', [country_id])]
 return request.render(
 'my_library.books', {
 'books': request.env['library.book'].
search(domain),
 })

Update the module to apply the changes. Add your country in the restricted country field
of the book, and access /book. Restricted books will not be shown on the list.

Warning
This recipe does not work with the local server. It will require a hosted server,
because with the local machine, you will get the local IP, which is not related to
any country.

You will also need to configure NGINX properly.

How it works...
In the first step, we added a new restricted_country_ids many2many type field
in the library.book model. We will hide the book if the website visitor is from a
restricted country.

In step 2, we have just added a restricted_country_ids field in the book's form
view. If GeoIP and NGINX are configured properly, Odoo will add GeoIP information to
request.session.geoip, and then you can get the country code from that.

In the third step, we have fetched the country code from GeoIP, followed by the recordset
of the country, based on country_code. After getting a visitor's country information,
we filtered books with domains based on a restricted country.

Important information
If you don't have a real server and you want to test this anyway, you can add a
default country code in the controller, like this:
country_code = request.session.geoip and request.
session.geoip.get('country_code') or 'IN'

Tracking a marketing campaign 471

The GeoIP database gets updated from time to time, so you will need to update your copy
to get up-to-date country information.

Tracking a marketing campaign
In any business or service, it is really important to be familiar with the Return on
Investment (ROI). The ROI is used to evaluate the effectiveness of an investment.
Investments in ads can be tracked through UTM codes. A UTM code is a small string
that you can add to a URL. This UTM code will help you to track campaigns, sources,
and media.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe.
Odoo has built-in support for UTMs. With our library application, we don't have any
practical case where UTMs can be used. However, in this recipe, we will add a UTM
in the issues generated by /books/submit_issues in my_library.

How to do it...
Follow these steps to link UTMs in a book issue generated from our web page to the /
books/submit_issues URL:

1. Add a utm module in the depends section of manifest.py, as follows:

 'depends': ['base', 'website', 'utm'],

2. Inherit utm.mixin in the book.issue model, as follows:

class LibraryBookIssues(models.Model):
 _name = 'book.issue'
 _inherit = ['utm.mixin']

 book_id = fields.Many2one('library.book',
required=True)
 submitted_by = fields.Many2one('res.users')
 issue_description = fields.Text()

472 CMS Website Development

3. Add a campaign_id field in the tree view of the book_issue_ids field, as
follows:

...
<group string="Book Issues">
 <field name="book_issue_ids" nolabel="1">
 <tree name="Book isuues">
 <field name="create_date"/>
 <field name="submitted_by"/>
 <field name="issue_description"/>
 <field name="campaign_id"/>
 </tree>
 </field>
</group>
...

Update the module to apply the changes. To test the UTM, you need to perform the
following steps:

1. In Odoo, a UTM is processed based on cookies, and some browsers do not support
cookies in the localhost, so if you are testing it with the localhost, access the
instance with http://127.0.0.1:8069.

By default, UTM tracking is blocked for salespeople. Consequently, to test the UTM
feature, you need to log in with a portal user.

2. Now, open the URL: http://127.0.0.1:8069/books/submit_
issues?utm_campaign=sale.

3. Submit the book issue and check the book issue in the backend. This will display the
campaign in the book's form view.

How it works...
In the first step, we have inherited utm.mixin in the book.issue model. This will add
the following fields to the book.issue model:

• campaign_id: The Many2one field with the utm.campaign model. This is used
to track different campaigns, such as the Summer and Christmas Special.

• source_id: The Many2one field with the utm.source model. This is used to
track different sources, such as search engines and other domains.

• medium_id: The Many2one field with the utm.medium model. This is used to
track different media, such as postcards, emails, and banner ads.

Managing multiple websites 473

To track the campaign, medium, and source, you need to share a URL in the
marketing media like this: your_url?utm_campaign=campaign_name&utm_
medium=medium_name&utm_source=source_name.

If a visitor visits your website from any marketing media, then the campaign_id,
source_id, and medium_id fields are automatically filled when records are created on
the website page.

In our example, we have just tracked campaign_id, but you can also add source_id
and medium_id.

Important note
In our test example, we have used campaign_id=sale. Now, sale is
the name of the record in the utm.campaign model. By default, the utm
module adds a few records of the campaign, medium, and source. The sale
record is one of them. If you want to create a new campaign, medium, and
source, you can do this by visiting the Link Tracker > UTMs menu in
developer mode.

Managing multiple websites
Odoo has built-in support for multiple websites. This means that the same Odoo instance
can be run on multiple domains as well as when displaying different records.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. In
this recipe, we will hide books based on the website.

474 CMS Website Development

How to do it...
Follow these steps to make the online website multi-website-compatible:

1. Add website.multi.mixin in the library.book model, as follows:

class LibraryBook(models.Model):
 _name = 'library.book'
 _inherit = ['website.seo.metadata', 'website.multi.
mixin']
...

2. Add website_id in the book form view, as follows:

...
<group>
 <field name="author_ids" widget="many2many_tags"/>
 <field name="website_id"/>
</group>
...

3. Modify the domain in the /books controller, as follows:

@http.route('/books', type='http', auth="user",
website=True)
def library_books(self, **post):
...
 domain = ['|', ('restrict_country_ids', '=', False),
('restrict_country_ids', 'not in', [country_id])]
 domain += request.website.website_domain()
 return request.render(
 'my_library.books', {
 'books': request.env['library.book'].
search(domain),
 })
...

4. Import werkzeug and modify a book details controller to restrict book access
from another website, as follows:

import werkzeug
...
@http.route('/books/<model("library.book"):book>',
type='http', auth="user", website=True, sitemap=sitemap_
books)
def library_book_detail(self, book, **post):

Managing multiple websites 475

 if not book.can_access_from_current_website():
 raise werkzeug.exceptions.NotFound()
 return request.render(
 'my_library.book_detail', {
 'book': book,
 'main_object': book
 })
...

Update the module to apply the changes. To test this module, set different websites in
some books. Now, open the /books URL and check the list of books. After this, change
the website and check the list of books. For testing, you can change the website from the
website switcher drop-down menu. Refer to the following screenshot to do that:

Figure 14.4 – Website switcher

You can also try to access the book details directly from the URL, such as for /books/1.
If a book is not from that website, it will show as 404.

How it works...
In the first step, we added website.multi.mixin. This mixin adds a basic utility to
handle multiple websites in the model. This mixin adds the website_id field in the
model. This field is used to determine which website a record is meant for.

In step 2, we added the website_id field in the form view of the book, so the books will
be filtered based on the website.

In step 3, we have modified the domain used to find a list of books. request.website.
website_domain() will return the domain that filters out the books that are not from
the website.

Important note
Notice that there are records that do not have any website_id set. Such
records will be displayed on all websites. This means that if you don't have a
website_id field on a particular book, then that book will be displayed on
all websites.

476 CMS Website Development

Then, we added the domain in the web search, as follows:

• In step 4, we restricted book access. If the book is not meant for the current website,
then we will raise a not found error. The can_access_from_current_
website() method will return the value True if a book record is meant for the
currently active website and False if a book record is meant for another website.

• If you noticed, we added **post in both controllers. This is because without it,
**post /books and /books/<model:library.book:book> will not accept
a query parameter. They will also generate an error while switching the website from
the website switcher, so we added it. Normally, it is a good practice to add **post
in every controller so that they can handle query parameters.

Redirecting old URLs
When you move to the Odoo website from an existing system or website, you must
redirect your old URLs to new URLs. With proper redirection, all of your SEO rankings
will be moved to new pages. In this recipe, we will see how to redirect old URLs to new
URLs in Odoo.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. For
this recipe, we are assuming that you used to have an website and have just moved to
Odoo.

How to do it...
Imagine that, in your old website, books were listed at the /library URL, and as you
know, the my_library module lists books on the /books URL as well. So, now we
will add a redirection rule in Odoo that will redirect your old /library URL to the
new /books URL. Perform the following steps to add the redirection rule:

1. Activate developer mode.

2. Open Website | Configuration | Redirects.

3. Click on Create to add a new rule.

4. Enter values in the form as shown in the following figure. In URL from,
enter /library, and in URL to, enter /books.

Redirecting old URLs 477

5. Select the Action value of 301 Moved permanently.

6. Save the record. Once you have filled in the data, your form will look like this:

Figure 14.5 – Redirection rule

Once you have added this rule, open the /library page. You will notice that the page
gets redirected automatically to the /books page.

How it works...
Page redirection is simple; it's just part of the HTTP protocol. In our example, we have
moved /library to /books. We have used a 301 Moved permanently redirect for
redirection. Here are all the redirection options that are available in Odoo:

• 404 Not Found: This option is used if you want to give a 404 Not Found
response for a page. Note that Odoo will display the default 404 page for such
requests.

• 301 Moved permanently: This option redirects old URLs to new ones permanently.
This type of redirection will move the SEO rankings to a new page.

• 302 Moved temporarily: This option redirects old URLs to new ones temporarily.
Use this option when you need to redirect a URL for a limited time. This type of
redirection will not move the SEO rankings to a new page.

• 308 Redirect/Rewrite: An interesting option – with this, you will be able to
change/rewrite existing Odoo URLs to new ones. In this recipe, this would allow
us to rewrite the old /library URL to the new /books URL. Hence, we would
have no need to redirect the old URL by using the 301 Moved permanently rule
for /library.

There are a few more fields on the redirection rule form. One of them is the Active
field, which can used if you want to enable/disable rules from time to time. The second
important field is Website. The Website field is used when you are using the multi-website
feature and you want to limit the redirection rule to one website only. By default, however,
the rule will be applied to all websites.

478 CMS Website Development

Publish management for website-related
records
In business flows, there are some cases where you need to allow or revoke page access
to public users. One such case is e-commerce products, where you need to publish or
unpublish products based on availability. In this recipe, we will see how you can publish
and unpublish book records for public users.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe.

Important note
If you notice, we have put auth='user' on the /books and /books/
<model("library.book"):book> routes. Please change this to
auth='public' to make those URLs accessible for public users.

How to do it…
Perform the following steps to enable a publish/unpublish option for book detail pages:

1. Add website.published.mixin to the library.book model like this:

class LibraryBook(models.Model):

 _name = 'library.book'

 _description = 'Library Book'

 _inherit = ['website.seo.metadata', 'website.
published.mixin']

 ...

2. Add a new file to my_library/security/rules.xml and add a record rule
for the books like this (make sure you register the file in the manifest):

<?xml version="1.0" encoding="utf-8"?>

<odoo noupdate="1">

 <record id="books_rule_portal_public" model="ir.
rule">

 <field name="name">
 Portal/Public user: read published books
 </field>

Publish management for website-related records 479

 <field name="model_id"
 ref="my_library.model_library_book"/>

 <field name="groups"
 eval="[(4, ref('base.group_portal')),
 (4, ref('base.group_public'))]"/>

 <field name="domain_force">
 [('website_published','=', True)]
 </field>

 <field name="perm_read" eval="True"/>

 </record>

</odoo>

3. Update the my_library module to apply the changes. Now you can publish and
unpublish book pages:

Figure 14.6 – The publish/unpublish button

To publish/unpublish books, you can use the toggle shown in the preceding screenshot of
a book detail page.

How it works...
Odoo provides a ready-made mixin to handle publish management for your records. It
does most of the job for you. All you need to do is add website.published.mixin
to your model. In step 1, we added website.published.mixin to our books model.
This will add all the fields and methods required to publish and unpublish books. Once
you add this mixin to the books model, you will be able to see the button to toggle the
state on the book detail page, as shown in the preceding figure.

Note
We are sending a book record as main_object from our book details route.
Without this, you will not be able to see the publish/unpublish button on the
book detail page.

480 CMS Website Development

Adding the mixin will show the publish/unpublish button on the book's detail page, but it
will not restrict a public user from accessing it. To do this, we need to add a record rule. In
step 2, we added a record rule to restrict access to unpublished books. If you want to learn
more about record rules, refer to Chapter 10, Security Access.

There's more…
The publish mixin will enable the publish/unpublish button on the website. But if you
want to show a redirect button on the backend form view, the publish mixin can provide
a means for that too. The following steps show how to add a redirect button to a book's
form view:

1. Add a method in the library.book model to compute the URL for a book:

@api.depends('name')

def _compute_website_url(self):

 for book in self:

 book.website_url = '/books/%s' % (slug(book))

2. Add a button in the form view to redirect to the website:

...
<sheet>

 <div class="oe_button_box" name="button_box">

 <field name="is_published"
 widget="website_redirect_button"/>

 </div>
...

Once you add the button, you will be able to see the button in the book's form view, and
by clicking on it, you will be redirected to the book's detail page.

15
Web Client

Development
Odoo's web client, or backend, is where employees spend most of their time. In Chapter
9, Backend Views, you saw how to use the existing possibilities that backends offer. Here,
we'll take a look at how to extend and customize those possibilities. The web module
contains everything related to the user interface in Odoo.

All of the code in this chapter will depend on the web module. As you know, Odoo has
two different editions (Enterprise and Community). Community uses the web module for
user interfaces, while the Enterprise version uses an extended version of the Community
web module, which is the web_enterprise module.

The Enterprise version provides some extra features compared with the Community web,
including mobile compatibility, searchable menus, and material design. We'll work on
the Community Edition here. Don't worry—the modules developed in Community work
perfectly in the Enterprise Edition because, internally, web_enterprise depends on the
Community web module and just adds some features to it.

482 Web Client Development

Important information
Odoo 14 is a bit unique for the backend web client compared to other Odoo
versions. It contains two different frameworks to maintain the GUI of the Odoo
backend. The first one is the widget-based legacy framework, and the second
one is the component-based modern framework called the Odoo Web Library
(OWL). OWL is the new UI framework introduced in Odoo v14. Both use
QWeb templates for structure, but there are significant changes in the syntax
and the way those frameworks work.

Although Odoo 14 has a new framework OWL, Odoo does not use this new
framework everywhere. Most of the web client is still written with the old
widget-based framework. In this chapter, we will see how to customize the web
client using a widget-based framework. In the next chapter, we will look at the
OWL framework.

In this chapter, you will learn how to create new field widgets to get input from users. We
will also be creating a new view from scratch. After reading this chapter, you will be able
to create your own UI elements in the Odoo backend.

Note
Odoo's user interface heavily depends on JavaScript. Throughout this chapter,
we will assume you have a basic knowledge of JavaScript, jQuery, Underscore.
js, and SCSS.

In this chapter, we will cover the following recipes:

• Creating custom widgets

• Using client-side QWeb templates

• Making RPC calls to the server

• Creating a new view

• Debugging your client-side code

• Improving onboarding with tours

• Mobile app JavaScript

Technical requirements 483

Technical requirements
The technical requirements for this chapter include the online Odoo platform.

All the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter15.

Creating custom widgets
As you saw in Chapter 9, Backend Views, we can use widgets to display certain data in
different formats. For example, we used widget='image' to display a binary field as an
image. To demonstrate how to create your own widget, we'll write one widget that lets the
user choose an integer field, but we will display it differently. Instead of an input box,
we will display a color picker so that we can select a color number. Here, each number will
be mapped to its related color.

Getting ready
For this recipe, we will be using the my_library module with basic fields and views. You
will find the basic my_library module in the Chapter15/00_initial_module
directory in the GitHub repository.

How to do it...
We'll add a JavaScript file that contains our widget's logic, and an SCSS file to do some
styling. Then, we will add one integer field to the books form to use our new widget.
Perform the following steps to add a new field widget:

1. Add a static/src/js/field_widget.js file. For the syntax that's used here,
refer to the Extending CSS and JavaScript for the website recipe from Chapter 14,
CMS Website Development:

odoo.define('my_field_widget', function (require) {
"use strict";

var AbstractField = require('web.AbstractField');
var fieldRegistry = require('web.field_registry');

2. Create your widget by extending AbstractField:

var colorField = AbstractField.extend({

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter15
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter15

484 Web Client Development

3. Set the CSS class, root element tag, and supported field types for the widget:

 className: 'o_int_colorpicker',
 tagName: 'span',
 supportedFieldTypes: ['integer'],

4. Capture some JavaScript events:

 events: {
 'click .o_color_pill': 'clickPill',
 },

5. Override init to do some initialization:

 init: function () {
 this.totalColors = 10;
 this._super.apply(this, arguments);
 },

6. Override _renderEdit and _renderReadonly to set up the DOM elements:

 _renderEdit: function () {
 this.$el.empty();
 for (var i = 0; i < this.totalColors; i++) {
 var className = "o_color_pill o_color_" + i;
 if (this.value === i) {
 className += ' active';
 }
 this.$el.append($('', {
 'class': className,
 'data-val': i,
 }));
 }
 },
 _renderReadonly: function () {
 var className = "o_color_pill active readonly o_
color_" + this.value;
 this.$el.append($('', {
 'class': className,
 }));
 },

7. Define the handlers we referred to earlier:

 clickPill: function (ev) {
 var $target = $(ev.currentTarget);

Creating custom widgets 485

 var data = $target.data();
 this._setValue(data.val.toString());
 }

}); // closing AbstractField

8. Don't forget to register your widget:

fieldRegistry.add('int_color', colorField);

9. Make it available for other add-ons:

return {
 colorField: colorField,
};
}); // closing 'my_field_widget' namespace

10. Add some SCSS in static/src/scss/field_widget.scss:

.o_int_colorpicker {
 .o_color_pill {
 display: inline-block;
 height: 25px;
 width: 25px;
 margin: 4px;
 border-radius: 25px;
 position: relative;
 @for $size from 1 through length($o-colors) {
 &.o_color_#{$size - 1} {
 background-color: nth($o-colors, $size);
 &:not(.readonly):hover {
 transform: scale(1.2);
 transition: 0.3s;
 cursor: pointer;
 }
 &.active:after{
 content: "\f00c";
 display: inline-block;
 font: normal 14px/1 FontAwesome;
 font-size: inherit;
 color: #fff;
 position: absolute;
 padding: 4px;
 font-size: 16px;
 }

486 Web Client Development

 }
 }
 }
}

11. Register both files in the backend assets in views/templates.xml:

<?xml version="1.0" encoding="UTF-8"?>
<odoo>
 <template id="assets_end" inherit_id="web.assets_
backend">
 <xpath expr="." position="inside">
 <script src="/my_library /static/src/js/
field_widget.js"
 type="text/javascript" />
 <link href="/my_library/static/src/scss/
field_widget.scss"
 rel="stylesheet" type="text/scss" />
 </xpath>
 </template>
</odoo>

12. Finally, add the color integer field to the library.book model:

 color = fields.Integer()

13. Add the color field to the book's form view, and then add widget="int_
color":

...
<group>
 <field name="date_release"/>
 <field name="color" widget="int_color"/>
</group>
...

Update the module to apply the changes. After the update, open the book's form view
and you will see the color picker, as shown in the following screenshot:

Figure 15.1 – How the custom widget is displayed

Creating custom widgets 487

How it works...
So that you can understand our example, let's go over the life cycle of the widget by
looking at its components:

• init(): This is the widget constructor. It is used for initialization purposes. When
the widget is initialized, this method is called first.

• willStart(): This method is called when the widget is initialized and in the
process of being appended in the DOM. It is used to initialize asynchronous data
in the widget. It is also supposed to return a deferred object, which can be obtained
simply from a super() call. We will use this method in the subsequent recipe.

• start(): This method is called after the widget has completed the rendering,
but has not yet been added to the DOM. It is very useful for a post-rendering job
and is supposed to return a deferred object. You can access a rendered element in
this.$el.

• destroy(): This method is called when the widget is destroyed. It is mostly used
for basic cleanup operations, such as event unbinding.

 Important information
The fundamental base class for widgets is Widget (defined by web.
Widget). If you want to dig further into this, you can study it at /addons/
web/static/src/js/core/widget.js.

In step 1, we imported AbstractField and fieldRegistry.

In step 2, we created colorField by extending AbstractField. Through this,
colorField will get all the properties and methods from AbstractField.

In step 3, we added three properties: className is used to define the class for
the root element of the widget; tagName is used for the root element type; and
supportedFieldTypes is used for deciding which type of fields are supported by this
widget. In our case, we want to create a widget for the integer type field.

In step 4, we mapped the events of our widget. Usually, the key is a combination of the
event name and the optional CSS selector. The event and CSS selector are separated
by a space, and the value will be the name of the widget method. So, when the event is
performed, the assigned method is called automatically. In this recipe, when a user clicks
on the color pill, we want to set the integer value in the field. To manage click events, we
have added a CSS selector and the method name to the events key.

488 Web Client Development

In step 5, we overrode the init method and set the value of the this.totalColors
attribute. We will use this variable to decide on the number of color pills. We want to
display 10 color pills, so we assigned the value of 10.

In step 6, we added two methods—_renderEdit and _renderReadonly. As their
names suggest, _renderEdit was called when the widget was in edit mode, and
_renderReadonly was called when the widget was in read-only mode. In the edit
method, we added a few tags, with each representing a separate color in the
widget. Upon clicking the tag, we will set the value in the field. We added them
to this.$el. Here, $el is the root element of the widget, and it will be added in the
form view. In read-only mode, we just want to display the active color, so we added
a single pill via the _renderReadonly() method. For now, we have added pills in
a hardcoded way, but in the next recipe, we will use a JavaScript QWeb template to render
the pills. Note that in the edit method, we used the totalColors property, which was
set from the init() method.

In step 7, we added the clickPill handler method to manage pill clicks. To set
the field value, we used the _setValue method. This method is added from the
AbstractField class. When you set the field value, the Odoo framework will rerender
the widget and call the _renderEdit method again so that you can render the widget
with the updated values.

In step 8, after we've defined our new widget, it's crucial to register it with the form widget
registry, which lives in web.field_registry. Note that all view types look at this
registry, so if you want to create another way of displaying a field in a list view, you can
also add your widget here and set the widget attribute on the field in the view definition.

Finally, we exported our widget class so that other add-ons can extend it or inherit from it.
Then, we added a new integer field called color to the library.book model. We also
added the same field to the form view with the widget="int_color" attribute. This
will display our widget in the form instead of the default integer widget.

There's more...
The web.mixins namespace defines a couple of very helpful mixin classes
that you should not miss out on when developing form widgets. You have already
used these mixins in this recipe. The AbstractField is created by inheriting
from the Widget class, and the Widget class inherits two mixins. The first one is
EventDispatcherMixin, which offers a simple interface for attaching event handlers
and triggering them. The second one is ServicesMixin, which provides functions for
RPC calls and actions..

Using client-side QWeb templates 489

Important tip
When you want to override a method, always study the base class to see
what the function is supposed to return. A very common cause of bugs is
forgetting to return the super user's deferred object, which causes trouble with
asynchronous operations.

Widgets are responsible for validation. Use the isValid function to implement your
customization of this aspect.

Using client-side QWeb templates
Just as it's a bad habit to programmatically create HTML code in JavaScript, you should
only create the minimum amount of DOM elements in your client-side JavaScript code.
Fortunately, there's a templating engine available for the client side, too, and even more
fortunately, the client-side templating engine has the same syntax as the server-side
templates.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. We
will make this more modular by moving the DOM element creation to QWeb.

How to do it...
We need to add the QWeb definition to the manifest and change the JavaScript code so
that we can use it. Perform the following steps to get started:

1. Import web.core and extract the qweb reference to a variable, as shown in the
following code:

odoo.define('my_field_widget', function (require) {
"use strict";

var AbstractField = require('web.AbstractField');
var fieldRegistry = require('web.field_registry');
var core = require('web.core');

var qweb = core.qweb;
...

490 Web Client Development

2. Change the _renderEdit function to simply render the element (inherited from
widget):

 _renderEdit: function () {
 this.$el.empty();
 var pills = qweb.render('FieldColorPills',
{widget: this});
 this.$el.append(pills);
 },

3. Add the template file to static/src/xml/qweb_template.xml:

<?xml version="1.0" encoding="UTF-8"?>
<templates>
 <t t-name="FieldColorPills">
 <t t-foreach="widget.totalColors" t-as='pill_no'>
 <span t-attf-class="o_color_pill o_
color_#{pill_no} #{widget.value === pill_no and 'active'
or ''}"
 t-att-data-val="pill_no"/>
 </t>
 </t>
</templates>

4. Register the QWeb file in your manifest:

"qweb": [
 'static/src/xml/qweb_template.xml',
],

Now, with other add-ons, it is much easier to change the HTML code our widget uses
because they can simply override it with the usual QWeb patterns.

How it works...
As there is already a comprehensive discussion on the basics of QWeb in the Creating or
modifying templates – QWeb recipe from Chapter 14, CMS Website Development, we'll
focus on what is different here. First of all, you need to realize that we're dealing with the
JavaScript QWeb implementation, as opposed to the Python implementation on the server
side. This means that you don't have access to browsing records or the environment; you
only have access to the parameters you have passed from the qweb.render function.

Using client-side QWeb templates 491

In our case, we have passed the current object via the widget key. This means that you
should have all the intelligence in the widget's JavaScript code and have your template
only access properties, or possibly functions. Given that we can access all the properties
that are available on the widget, we can simply check the value in the template by checking
the totalColors property.

As client-side QWeb has nothing to do with QWeb views, there's a different mechanism
to make those templates known to the web client—add them via the qweb key to your
add-on's manifest in a list of filenames relative to the add-on's root.

Note
If you do not want to list your QWeb template in the manifest, you can use the
xmlDependencies key on the snippet to lazily load the template. With
xmlDependencies, the QWeb template is only loaded when the widget is
being initialized.

There's more...
The reason for going to the effort of using QWeb here was extensibility, and this is the
second big difference between client-side and server-side QWeb. On the client side, you
can't use XPath expressions; you need to use jQuery selectors and operations. If, for
example, we want to add user icons to our widget from another module, we'll use the
following code to have an icon in each pill:

<t t-extend="FieldColorPills">
 <t t-jquery="span" t-operation="prepend">
 <i class="fa fa-user" />
 </t>
</t>

If we also provided a t-name attribute here, we'd have made a copy of the original
template and left that one untouched. Other possible values for the t-operation
attribute are append, before, after, inner, and replace, which causes the
content of the t element to either be appended to the content of the matched element via
append, put before or after the matched element via before or after, the content of
the matched element replaced via inner, or the complete element replaced via replace.
There's also t-operation='attributes', which allows you to set an attribute on the
matched element, following the same rules as server-side QWeb.

Another difference is that the names in client-side QWeb are not namespaced by the
module name, so you have to choose names for your templates that are probably unique
over all add-ons you install, which is why developers tend to choose rather long names.

492 Web Client Development

See also
If you want to learn more about the QWeb templates, refer to the following points:

• The client-side QWeb engine has less convenient error messages and handling than
other parts of Odoo. A small error often means that nothing happens, and it's hard
for beginners to continue from there.

• Fortunately, there are some debug statements for client-side QWeb templates that
will be described later in this chapter, in the Debugging your client-side code recipe.

Making RPC calls to the server
Sooner or later, your widget will need to look up some data from the server. In this recipe,
we will add a tooltip on the color pill. When the user hovers their cursor over the color
pill element, the tooltip will show the number of books related to that color. We will make
an RPC call to the server to fetch a book count of the data associated with that particular
color.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe.

How to do it...
Perform the following steps to make an RPC call to the server and display the result in a
tooltip:

1. Add the willStart method and set colorGroupData in the RPC call:

 willStart: function () {
 var self = this;
 this.colorGroupData = {};
 var colorDataPromise = this._rpc({
 model: this.model,
 method: 'read_group',
 domain: [],
 fields: ['color'],
 groupBy: ['color'],
 }).then(function (result) {
 _.each(result, function (r) {
 self.colorGroupData[r.color] = r.color_
count;
 });

Making RPC calls to the server 493

 });
 return Promise.all([this._super.apply(this,
arguments), colorDataPromise]);
 },

2. Update _renderEdit and set up a bootstrap tooltip on pills:

 _renderEdit: function () {
 this.$el.empty();
 var pills = qweb.render('FieldColorPills',
{widget: this});
 this.$el.append(pills);
 this.$el.find('[data-toggle="tooltip"]').
tooltip();
 },

3. Update the FieldColorPills template and add the tooltip data:

<t t-name="FieldColorPills">
 <t t-foreach="widget.totalColors" t-as='pill_no'>
 <span t-attf-class="o_color_pill o_color_#{pill_
no} #{widget.value === pill_no and 'active' or ''}"
 t-att-data-val="pill_no"
 data-toggle="tooltip"
 data-placement="top"
 t-attf-title="This color is used in #{widget.
colorGroupData[pill_no] or 0 } books."
 />
 </t>
</t>

Update the module to apply the changes. After the update, you will be able to see a tooltip
on the pills, as shown in the following screenshot:

Figure 15.2 – Tooltip that uses the data obtained from RPC

494 Web Client Development

How it works...
The willStart function is called before rendering and, more importantly, it returns a
Promise object that must be resolved before the rendering starts. So, in a case like ours,
where we need to run an asynchronous action before rendering can occur, this is the right
function to do this.

When dealing with data access, we rely on the _rpc function provided by the
ServicesMixin class, as we explained earlier. This function allows you to call any
public function on models such as search, read, write, or, in this case, read_group.

In step 1, we made an RPC call and invoked the read_group method on the current
model, which is library.book in our case. We grouped data based on the color
field, so that the RPC call will return book data that was grouped by color and add an
aggregate in the color_count key. We also mapped the color_count and color
index in the colorGroupData so that we could use it in the QWeb template. In the
last line of the function, we resolved willStart with super and our RPC call using
$.when. Because of this, rendering only occurs after the values are fetched and after any
asynchronous action super that was busy earlier, has finished, too.

Step 2 is nothing special. We just initialized the bootstrap tooltip.

In step 3, we used colorGroupData to set the attributes that are needed to
display the tooltip. In the willStart method, we assigned a color map via this.
colorGroupData, so that you can access them in the QWeb template via widget.
colorGroupData. This is because we passed the widget reference; this is the qweb.
render method.

Note
You can use _rpc anywhere in the widget. Note that it is an asynchronous call,
and you need to manage a deferred object properly to get the desired result.

There's more...
The AbstractField class comes with a couple of interesting properties, one of which
we just used. In our example, we used the this.model property, which holds the name
of the current model (for example, library.book). Another property is this.field,
which contains roughly the output of the model's fields_get() function for the field
the widget is displaying. This will give all the information related to the current field. For
example, for x2x fields, the fields_get() function gives you information about the
co-model or the domain. You can also use this to query the field's string, size, or whatever
other property you can set on the field during model definition.

Creating a new view 495

Another helpful property is nodeOptions, which contains data passed via the options
attribute in the <form> view definition. This is already JSON parsed, so you can
access it like any object. For more information on such properties, dig further into the
abstract_field.js file.

See also
Refer to the following documentation if you have issues managing asynchronous
operations:

• Odoo's RPC returns JavaScript's native Promise object. You will get requested data
once Promise is resolved. You can learn more about Promise here: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise.

Creating a new view
As you saw in Chapter 9, Backend Views, there are different kinds of views, such as form,
list, and kanban. In this recipe, we will create a brand-new view. This view will display the
list of authors, along with their books.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe. Note
that views are very complex structures, and each existing view has a different purpose and
implementation. The purpose of this recipe is to make you aware of the MVC pattern view
and how to create simple views. In this recipe, we will create a view called m2m_group,
the purpose of which is to display records in groups. To divide records into different
groups, the view will use the many2many field data. In the my_library module, we
have the author_ids field. Here, we will group books based on authors and display
them in cards.

In addition, we will add a new button to the control panel. With the help of this button,
you will be able to add a new book record. We will also add a button to the author's card
so that we can redirect users to another view.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

496 Web Client Development

How to do it...
Perform the following steps to add a new view called m2m_group:

1. Add a new view type in ir.ui.view:

class View(models.Model):
 _inherit = 'ir.ui.view'

 type = fields.Selection(selection_add=[('m2m_group',
'M2m Group')])

2. Add a new view mode in ir.actions.act_window.view:

class ActWindowView(models.Model):
 _inherit = 'ir.actions.act_window.view'

 view_mode = fields.Selection(selection_add=[('m2m_
group', 'M2m group')], ondelete={'m2m_group': 'cascade'})

3. Add a new method by inheriting from the base model. This method will be called
from the JavaScript model (see step 4 for more details):

class Base(models.AbstractModel):
 _inherit = 'base'

 @api.model
 def get_m2m_group_data(self, domain, m2m_field):
 records = self.search(domain)
 result_dict = {}
 for record in records:
 for m2m_record in record[m2m_field]:
 if m2m_record.id not in result_dict:
 result_dict[m2m_record.id] = {
 'name': m2m_record.display_name,
 'children': [],
 'model': m2m_record._name
 }
 result_dict[m2m_record.id]['children'].
append({
 'name': record.display_name,
 'id': record.id,
 })
 return result_dict

Creating a new view 497

4. Add a new file called /static/src/js/m2m_group_model.js and add the
following content to it:

odoo.define('m2m_group.Model', function (require) {
 'use strict';

 var AbstractModel = require('web.AbstractModel');

 var M2mGroupModel = AbstractModel.extend({
 __get: function () {
 return this.data;
 },
 __load: function (params) {
 this.modelName = params.modelName;
 this.domain = params.domain;
 this.m2m_field = params.m2m_field;
 return this._fetchData();
 },
 __reload: function (handle, params) {
 if ('domain' in params) {
 this.domain z= params.domain;
 }
 return this._fetchData();
 },
 _fetchData: function () {
 var self = this;
 return this._rpc({
 model: this.modelName,
 method: 'get_m2m_group_data',
 kwargs: {
 domain: this.domain,
 m2m_field: this.m2m_field
 }
 }).then(function (result) {
 self.data = result;
 });
 },
 });

 return M2mGroupModel;

});

498 Web Client Development

5. Add a new file called /static/src/js/m2m_group_controller.js and
add the following content to it:

odoo.define('m2m_group.Controller', function (require) {
 'use strict';

 var AbstractController = require('web.
AbstractController');
 var core = require('web.core');
 var qweb = core.qweb;

 var M2mGroupController = AbstractController.extend({
 custom_events: _.extend({}, AbstractController.
prototype.custom_events, {
 'btn_clicked': '_onBtnClicked',
 }),
 renderButtons: function ($node) {
 if ($node) {
 this.$buttons = $(qweb.
render('ViewM2mGroup.buttons'));
 this.$buttons.appendTo($node);
 this.$buttons.on('click', 'button',
this._onAddButtonClick.bind(this));
 }
 },
 _onBtnClicked: function (ev) {
 this.do_action({
 type: 'ir.actions.act_window',
 name: this.title,
 res_model: this.modelName,
 views: [[false, 'list'], [false,
'form']],
 domain: ev.data.domain,
 });
 },
 _onAddButtonClick: function (ev) {
 this.do_action({
 type: 'ir.actions.act_window',
 name: this.title,
 res_model: this.modelName,
 views: [[false, 'form']],
 target: 'new'
 });
 },

Creating a new view 499

 });

 return M2mGroupController;

});

6. Add a new file called /static/src/js/m2m_group_renderer.js and add
the following content to it:

odoo.define('m2m_group.Renderer', function (require) {
 'use strict';

 var AbstractRenderer = require('web.
AbstractRenderer');
 var core = require('web.core');

 var qweb = core.qweb;

 var M2mGroupRenderer = AbstractRenderer.extend({
 events: _.extend({}, AbstractRenderer.prototype.
events, {
 'click .o_primay_button': '_onClickButton',
 }),
 _render: function () {
 var self = this;
 this.$el.empty();
 this.$el.append(qweb.render('ViewM2mGroup', {
 'groups': this.state,
 }));
 return this._super.apply(this, arguments);
 },
 _onClickButton: function (ev) {
 ev.preventDefault();
 var target = $(ev.currentTarget);
 var group_id = target.data('group');
 var children_ids = _.map(this.state[group_
id].children, function (group_id) {
 return group_id.id;
 });
 this.trigger_up('btn_clicked', {
 'domain': [['id', 'in', children_ids]]
 });
 }
 });

500 Web Client Development

 return M2mGroupRenderer;

});

7. Add a new file called /static/src/js/m2m_group_view.js and add the
following content to it:

odoo.define('m2m_group.View', function (require) {
 'use strict';

 var AbstractView = require('web.AbstractView');
 var view_registry = require('web.view_registry');
 var M2mGroupController = require('m2m_group.
Controller');
 var M2mGroupModel = require('m2m_group.Model');
 var M2mGroupRenderer = require('m2m_group.Renderer');

 var M2mGroupView = AbstractView.extend({
 display_name: 'Author',

 icon: 'fa-id-card-o',

 config: _.extend({}, AbstractView.prototype.
config, {

 Model: M2mGroupModel,

 Controller: M2mGroupController,

 Renderer: M2mGroupRenderer,

 }),

 viewType: 'm2m_group',

 searchMenuTypes: ['filter', 'favorite'],

 accesskey: "a",
 init: function (viewInfo, params) {
 this._super.apply(this, arguments);
 var attrs = this.arch.attrs;

 if (!attrs.m2m_field) {
 throw new Error('M2m view has not defined
"m2m_field" attribute.');
 }

 // Model Parameters
 this.loadParams.m2m_field = attrs.m2m_field;

Creating a new view 501

 },
 });

 view_registry.add('m2m_group', M2mGroupView);

 return M2mGroupView;

});

8. Add the QWeb template for the view to the /static/src/xml/qweb_
template.xml file:

<t t-name="ViewM2mGroup">
 <div class="row ml16 mr16">
 <div t-foreach="groups" t-as="group"
class="col-3">
 <t t-set="group_data" t-value="groups[group]"
/>
 <div class="card mt16">
 <img class="card-img-top" t-attf-src="/
web/image/#{group_data.model}/#{group}/image_512"/>
 <div class="card-body">
 <h5 class="card-title mt8"><t
t-esc="group_data['name']"/></h5>
 </div>
 <ul class="list-group list-group-flush">
 <t t-foreach="group_data['children']"
t-as="child">
 <li class="list-group-item"><i
class="fa fa-book"/> <t t-esc="child.name"/>
 </t>

 <div class="card-body">
 <a href="#" class="btn
btn-sm btn-primary o_primay_button" t-att-data-
group="group">View books
 </div>
 </div>
 </div>
 </div>
</t>

<div t-name="ViewM2mGroup.buttons">
 <button type="button" class="btn btn-primary">
 Add Record

502 Web Client Development

 </button>
</div>

9. Add all of the JavaScript files to the backend assets:

...
<script type="text/javascript" src="/my_library/static/
src/js/m2m_group_view.js" />
<script type="text/javascript" src="/my_library/static/
src/js/m2m_group_model.js" />
<script type="text/javascript" src="/my_library/static/
src/js/m2m_group_controller.js" />
<script type="text/javascript" src="/my_library/static/
src/js/m2m_group_renderer.js" />
...

10. Finally, add our new view for the library.book model:

 <record id="library_book_view_author" model="ir.
ui.view">
 <field name="name">Library Book Author</field>
 <field name="model">library.book</field>
 <field name="arch" type="xml">
 <m2m_group m2m_field="author_ids" color_
field="color">
 </m2m_group>
 </field>
 </record>

11. Add m2m_group to the Book action:

...
<field name="view_mode">tree,m2m_group,form</field>
...

Update the my_library module to open the Book view, and then, from the view
switcher, open the new view that we just added. This will look as follows:

Creating a new view 503

Figure 15.3 – Many2many group view

Important information
Odoo views are very easy to use and are very flexible. However, it is often the
case that easy and flexible things have complex implementations under the
hood. This is true of Odoo JavaScript views: they are easy to use, but complex
to implement. They consist of lots of components, including the model,
renderer, controller, view, and QWeb template. In the next section, we have
added all of the required components for the views and have also used a new
view for the library.book model. If you don't want to add everything
manually, grab a module from the example file in this book's GitHub
repository.

How it works...
In steps 1 and 2, we registered a new type of view, called m2m_group, in ir.ui.view
and ir.actions.act_window.view.

504 Web Client Development

In step 3, we added the get_m2m_group_data method to the base. Adding this method
to the base will make that method available in every model. This method will be called
via an RPC call from the JavaScript view. The view will pass two parameters—the domain
and m2m_field. In the domain argument, the value of the domain will be the domain
generated with a combination of the search view domain and the action domain. m2m_
field is the field name by which we want to group the records. This field will be set on
the view definition.

In the next few steps, we added the JavaScript files that are required to form the view.
An Odoo JavaScript view consists of the view, model, renderer, and controller. The word
view has historical meaning in the Odoo code base, so model, view, controller (MVC)
becomes model, renderer, controller (MRC) in Odoo. In general, the view sets up the
model, renderer, and controller, and sets the MVC hierarchy so that it looks similar to the
following:

Figure 15.4 – View components

Let's look at the roles of Model, Renderer, Controller, and View. Abstract versions of
Model, Renderer, Controller, and View have all the basic things that are needed to form
a view. Consequently, in our example, we have created the model, renderer, controller, and
view by inheriting them.

Here is an in-depth explanation of the different parts that are used to create a view:

• Model: The role of the model is to hold the state of the view. It sends an RPC
request to the server for the data, and then passes the data to the controller and
renderer. We then override the __load and __reload methods. When the
view is being initialized, it calls the __load() method to fetch the data, and
when the search conditions are changed and the view needs a new state, then
the __reload() method is called. In our case, we have created the common
fetchData() method to make an RPC call for data. Note that we used the get
m2m_group_data method that we added in step 3. The __get() method will be
called from the controller to get the state of the model.

Creating a new view 505

• Controller: The role of the Controller is to manage coordination between the
Model and the Renderer. When an action occurs in the Renderer, it passes that
information to the controller and performs the action accordingly. Sometimes, it
also calls some methods in the Model. In addition to this, it manages the buttons in
the control panel. In our example, we added a button to add new records. To do so,
we had to override the renderButtons() method of AbstractController.
We also registered custom_events so that when a button in the author card is
clicked, the renderer will trigger the event to the controller to make it perform the
action.

• Renderer: The role of the renderer is to manage the DOM elements for the view.
Every view can render data in a different way. In the renderer, you can get the state
of the model in a state variable. It calls the render() method for the rendering.
In our example, we rendered the ViewM2mGroup QWeb template with its current
state to display our view. We also mapped the JavaScript events to take user actions.
In this recipe, we have bound the click event for the buttons of the card. Upon
clicking the author card button, it will trigger the btn_clicked event to the
controller, and it will open the list of books for that author.

Important note
Note that events and custom_events are different. Events are normal
JavaScript events, while custom_events events are from the Odoo
JavaScript framework. Custom events can be invoked via the trigger_up
method.

• View: The role of the View is to get all the basic things that are required to build
views, such as a set of fields, a context, a view arch, and some other parameters.
After that, the view will initialize the controller, renderer, and model triplet. It will
set them in the MVC hierarchy. Usually, it sets up the parameters that are required
in the model, view, and controller. In our example, we want the m2m_field name
to get properly grouped data in the Model, so we have set the model parameter in it.
In the same way, this.controllerParams and this.rendererParams can
be used to set the parameters in the controller and renderer.

In step 8, we added a QWeb template for the views and control panel buttons. To learn
more about the QWeb template, refer to the Using client-side QWeb templates recipe in this
chapter.

506 Web Client Development

Important information
Odoo views have tons of methods for different purposes; we looked at the most
important one in this section. If you want to learn more about views, you can
explore them further by going to the /addons/web/static/src/js/
views/ directory. This directory also includes code for the abstract model,
controller, renderer, and view.

In step 9, we added JavaScript files to the assets.

Finally, in the last two steps, we added a view definition for the book.library model.
In step 10, we used the <m2m_group> tag for the view, and we also passed the m2m_
field attribute as the option. This will be passed to the model to fetch the data from the
server.

There's more...
If you don't want to introduce the new view type and you just want to modify a few things
in the view instead, you can use js_class on the view. For example, if we want a view
similar to the kanban one that we created, then we can extend it as follows:

var CustomRenderer = KanbanRenderer.extend({
 ...
});

var CustomRendererModel = KanbanModel.extend({
 ...
});

var CustomRendererController = KanbanController.extend({
 ...
});

var CustomDashboardView = KanbanView.extend({
 config: _.extend({}, KanbanView.prototype.config, {
 Model: CustomDashboardModel,
 Renderer: CustomDashboardRenderer,
 Controller: CustomDashboardController,
 }),
});

var viewRegistry = require('web.view_registry');
viewRegistry.add('my_custom_view', CustomDashboardView);

Debugging your client-side code 507

We can then use the kanban view with js_class (note that the server still thinks of this
as a kanban view):

...
<field name="arch" type="xml">
 <kanban js_class="my_custom_view">
 ...
 </kanban>
</field>
...

Debugging your client-side code
For debugging server-side code, this book contains a whole chapter, that is, Chapter 7,
Debugging Modules. For the client-side part, you'll get a kick-start in this recipe.

Getting ready
This recipe doesn't really rely on specific code, but if you want to be able to reproduce
exactly what's going on, grab the previous recipe's code.

How to do it...
What makes debugging client-side script difficult is that the web client relies heavily on
jQuery's asynchronous events. Given that breakpoints halt execution, there is a high
chance that a bug caused by timing issues will not occur when debugging. We'll discuss
some strategies for this later:

1. For the client-side debugging, you will need to activate debug mode with the assets.
If you don't know how to activate debug mode with the assets, read the Activating
the Odoo developer tools recipe from Chapter 1, Installing the Odoo Development
Environment.

2. In the JavaScript function you're interested in, call debugger:

debugger;

3. If you have timing problems, log in to the console through a JavaScript function:

console.log("I'm in function X currently");

4. If you want to debug during template rendering, call the debugger from QWeb:

<t t-debug="" />

508 Web Client Development

5. You can also have QWeb log in to the console, as follows:

<t t-log="myvalue" />

All of this relies on your browser offering the appropriate functionality for debugging.
While all major browsers do that, we'll only look at Chromium here, for demonstration
purposes. To be able to use the debug tools, open them by clicking on the top-right menu
button and selecting More tools | Developer tools:

Figure 15.5 – Opening Developer Tools in Chrome

How it works...
When the debugger is open, you should see something similar to the following screenshot:

Debugging your client-side code 509

Figure 15.6 – Paused debugger

Here, you have access to a lot of different tools in the separate tabs. The currently active
tab in the preceding screenshot is the JavaScript debugger, where we set a breakpoint in
line 31 by clicking on the line number. Every time our widget fetches the list of users, the
execution should stop at this line, and the debugger will allow you to inspect variables or
change their values. Within the watch list to the right, you can also call functions to try
out their effects without having to continuously save your script file and reload the page.

The debugger statements we described earlier will behave the same as soon as you have
the developer tools open. The execution will then stop, and the browser will switch to the
Sources tab, with the file in question opened and the line with the debugger statement
highlighted.

The two logging possibilities from earlier will end up in the Console tab. This is the first
tab you should inspect in case of problems in any case because, if some JavaScript code
doesn't load at all because of syntax errors or similar fundamental problems, you'll see an
error message there explaining what's going on.

There's more...
Use the Elements tab to inspect the DOM representation of the page the browser
currently displays. This will prove helpful when it comes to familiarizing yourself with the
HTML code the existing widgets produce, and it will also allow you to play with classes
and CSS attributes, in general. This is a great resource for testing layout changes.

510 Web Client Development

The Network tab gives you an overview of which requests the current page made and
how long it took. This is helpful when it comes to debugging slow page loads as, in the
Network tab, you will usually find the details of the requests. If you select a request, you
can inspect the payload that was passed to the server and the result returned, which helps
you to figure out the reason for unexpected behavior on the client side. You'll also see
the status codes of requests made—for example, 404—in case a resource can't be found
because you misspelled a filename, for instance.

Improving onboarding with tours
After developing a large application, it is crucial to explain software flows to the end users.
The Odoo framework includes a built-in tour manager. With this tour manager, you can
guide an end user through learning specific flows. In this recipe, we will create a tour so
that we can create a book in the library.

Getting ready
We will be using the my_library module from the previous recipe. Tours are only
displayed in the database without demo data, so if you are using a database with demo
data, create a new database without demo data for this recipe.

How to do it...
To add a tour to a library, perform the following steps:

1. Add a new /static/src/js/my_library_tour.js file with the following
code:

odoo.define('my_library.tour', function (require) {

"use strict";

var core = require('web.core');

var tour = require('web_tour.tour');

var _t = core._t;

tour.register('library_tour', {

 url: "/web",

 rainbowManMessage: _t("Congrats, you have listed a
book."),

 sequence: 5,

Improving onboarding with tours 511

 }, [tour.stepUtils.showAppsMenuItem(), {

 trigger: '.o_app[data-menu-xmlid="my_library.
library_base_menu"]',

 content: _t('Manage books and authors in
Library app.'),

 position: 'right'

 }, {

 trigger: '.o_list_button_add',

 content: _t("Let's create new book."),

 position: 'bottom'

 }, {

 trigger: 'input[name="name"]',

 extra_trigger: '.o_form_editable',

 content: _t('Set the book title'),

 position: 'right',

 }, {

 trigger: '.o_form_button_save',

 content: _t('Save this book record'),

 position: 'bottom',

 }

]);

});

2. Add the tour JavaScript file in the backend assets:

...
<script type="text/javascript" src="/my_library/static/
src/js/my_library_tour.js" />
...

512 Web Client Development

Update the module and open the Odoo backend. At this point, you will see the tour, as
shown in the following screenshot:

Figure 15.7 – Tour step for user onboarding

Make sure you have disabled demo data in your Odoo instance. An instance with demo
data does not show tours.

How it works...
The tour manager is available under the web_tour.tour namespace.

In the first step, we imported web_tour.tour. We can then add a new tour with the
register() function. We registered our tour with the library_tour name and
passed the URL on which this tour should run.

The next parameter is a list of these tour steps. A tour step requires three values. The
trigger is used to select the element on which the tour should be displayed. This is
a JavaScript selector. We used the XML ID of the menu because it is available in
the DOM.

The first step, tour.stepUtils.showAppsMenuItem(), is the predefined step from
the tour for the main menu. The next key is the content, and this is displayed when the
user hovers over the tour drop. We used the _t() function because we want to translate
the string, while the position key is used to decide on the position of the tour drop.
Possible values include top, right, left, or bottom.

Important information
The tours improve the onboarding experience of the user, as well as managing
the integration tests. When you run Odoo with test mode internally, it also
runs the tours and causes the test case to fail if a tour has not finished.

Mobile app JavaScript 513

Mobile app JavaScript
Odoo v10 introduced the Odoo mobile application. It provides a few small utilities to
perform mobile actions, such as vibrate phone, show toast message, and scan QR code.

Getting ready
We will be using the my_library module from the previous library. We will show you
the toast when we change the value of the color field from the mobile app.

Warning
The Odoo mobile app only supports the Enterprise Edition, so if you don't have
the Enterprise Edition, then you cannot test it.

How to do it...
Perform the following steps to show a toast message in the Odoo mobile app:

1. Import web_mobile.rpc in field_widget.js:

var mobile = require('web_mobile.core');

2. Modify the clickPill method to display the toast when the user changes the
color from the mobile device:

 clickPill: function (ev) {
 var $target = $(ev.currentTarget);
 var data = $target.data();
 if (mobile.methods.showToast) {
 mobile.methods.showToast({ 'message': 'Color
changed' });
 }
 this._setValue(data.val.toString());
 }

514 Web Client Development

Update the module and open the form view of the library.book model in the
mobile app. When you change the color, you will see the toast, as shown in the following
screenshot:

Figure 15.8 – Toast on color change

Mobile app JavaScript 515

How it works...
web_mobile.rpc provides the bridge between a mobile device and Odoo JavaScript.
It exposes a few basic mobile utilities. In our example, we used the showToast method
to display toast in the mobile app. We also need to check the availability of the function.
The reason behind this is that some mobile phones might not support a few features. For
example, if devices don't have a camera, then you can't use the scanBarcode() method.
In such cases, to avoid tracebacks, we need to wrap them with the if condition.

There's more...
The mobile utilities that are to be found in Odoo are as follows:

• showToast(): To display a toast message

• vibrate(): To make a phone vibrate

• showSnackBar(): To display a snack bar with a button

• showNotification(): To display a mobile notification

• addContact(): To add a new contact to the phonebook

• scanBarcode(): To scan QR codes

• switchAccount(): To open the account switcher in Android

To learn more about mobile JavaScript, refer to https://www.odoo.com/
documentation/14.0/reference/mobile.html.

https://www.odoo.com/documentation/14.0/reference/mobile.html
https://www.odoo.com/documentation/14.0/reference/mobile.html

16
The Odoo Web
Library (OWL)

Odoo v14 introduced a new JavaScript framework called OWL (short for Odoo Web
Library). OWL is a component-based UI framework and uses QWeb templates for
structure. OWL is very fast compared to Odoo's legacy widget system and introduces tons
of new features, including hooks, reactivity, the autoinstantiation of subcomponents, and
more besides. In this chapter, we will learn how to use an OWL component to generate
interactive UI elements. We will start from the minimal OWL component and then we
will learn about the component's life cycle. Finally, we will create a new field widget for the
form view. In this chapter, we will cover the following recipes:

• Creating an OWL component

• Managing user actions in an OWL component

• Making OWL components reactive

• Understanding the OWL component life cycle

• Adding an OWL field to the form view

518 The Odoo Web Library (OWL)

Note
The following question may occur to you: Why is Odoo not using some
well-known JavaScript frameworks, such as React.js or Vue.js? You can refer
to https://github.com/odoo/owl to learn more about the OWL
framework.

Technical requirements
OWL components are defined with ES6 classes. In this chapter, we will be using some
ES6 syntax. Also, some ES6 syntaxes are not supported by old browsers, so make sure
you are using the latest version of Chrome or Firefox. You will find the code for this
chapter at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter16.

Creating an OWL component
The goal of this recipe is to learn the basics of an OWL component. We will create
a minimal OWL component and append it to the Odoo web client. In this recipe, we will
create a component for a small horizontal bar with some text.

Getting ready
For this recipe, we will be using the my_library module with basic fields and views. You
will find the basic my_library module in the Chapter16/00_initial_module
directory in the GitHub repository.

How to do it...
We will add a small horizontal bar component to the Odoo web client. Perform the
following steps to add your first component to the Odoo web client:

1. Add a /my_library/static/src/js/component.js JavaScript file and
define the new module's namespace:

odoo.define('my.component', function (require) {

 "use strict";

 // Place steps 3, 4, 5 here

});

https://github.com/odoo/owl
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter16
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter16

Creating an OWL component 519

2. Add the /my_library/views/templates.xml XML file and load the
component JavaScript in assets such as these:

<template id="assets_end" inherit_id="web.assets_
backend">

 <xpath expr="." position="inside">

 <script src="/my_library/static/src/js/

 component.js" type="text/javascript" />

 </xpath>

</template>

3. Define the OWL utilities in the component.js file added in step 1:

const { Component } = owl;

const { xml } = owl.tags;

4. Add the OWL component and its basic template to the component.js file added
in step 1:

class MyComponent extends Component {

 static template = xml`

 <div class="bg-info text-center p-2">

 Welcome to Odoo

 </div>`

}

5. Initialize and append the component to the web client. Add this to the
component.js file added in step 1:

 owl.utils.whenReady().then(() => {

 const app = new MyComponent();

 app.mount(document.body);

 });

520 The Odoo Web Library (OWL)

Install/upgrade the my_library module to apply our changes. Once our module is
loaded in Odoo, you will see the horizontal bar, as in the following screenshot:

Figure 16.1 – OWL component

This is just a simple component. Right now, it will not handle any user events and you
cannot remove it.

How it works...
In step 1 and step 2, we added a JavaScript file and listed this in the backend assets. If you
want to learn more about assets, refer to the Static assets management recipe in Chapter
14, CMS Website Development.

In step 3, we initialized a variable from OWL. All the utilities from OWL are available
under a single global variable, owl. In our example, we pulled an OWL utility. First,
we declared Component, and then we declared xml from owl.tags. Component
is the main class for the OWL component and by extending it, we will create our own
components.

In step 4, we created our component, MyComponent, by extending OWL's Component
class. For the sake of simplicity, we have just added the QWeb template to the definition
of the MyComponent class. If you notice here, we have used xml`…` to declare our
template. This syntax is known as an inline template. However, you can load QWeb
templates via separate files, which is usually the case. We will see examples of external
QWeb templates in the upcoming recipes.

Managing user actions in an OWL component 521

Note
Inline QWeb templates do not support translations or modifications via
inheritance. So, always endeavor to load QWeb templates from a separate file.

In step 5, we instantiated the MyComponent component and appended it to the body. The
OWL component is an ES6 class, so you can create an object via the new keyword. Then
you can use the mount() method to add the component to the page. If you notice, we
have placed our code inside the whenReady() callback. This will ensure that all OWL
functionality is properly loaded before we start using OWL components.

There's more...
OWL is a separate library and loaded in Odoo as an external JavaScript library. You can
use OWL in your other projects, too. The OWL library is listed at https://github.
com/odoo/owl. There is also an online playground available in case you just want to
test OWL without setting it in your local machine. You can play with OWL at https://
odoo.github.io/owl/playground/.

Managing user actions in an OWL component
To make the user interface interactive, components need to handle user actions such as
click, hover, and form submission. In this recipe, we will add a button to our component,
and we will handle a click event.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe.

How to do it...
In this recipe, we will add a delete button to the component. Upon clicking the delete
button, the component gets removed. Perform the following steps to add a delete button
and its event in the component:

1. Update the QWeb template and add an icon to remove the bar:

static template = xml`

 <div class="bg-info text-center p-2">

 Welcome to Odoo

 <i class="fa fa-close p-1 float-right"

https://github.com/odoo/owl
https://github.com/odoo/owl
https://odoo.github.io/owl/playground/
https://odoo.github.io/owl/playground/

522 The Odoo Web Library (OWL)

 style="cursor: pointer;"

 t-on-click="onRemove"> </i>

 </div>`

2. To remove the component, add the onRemove method to the MyComponent class,
as follows:

class MyComponent extends Component {

 static template = xml`

 <div class="bg-info text-center p-2">

 Welcome to Odoo

 <i class="fa fa-close p-1 float-right"

 style="cursor: pointer;"

 t-on-click="onRemove"> </i>

 </div>`

 onRemove(ev) {

 this.destroy();

 }

}

Update the module to apply the changes. Following the update, you will see a little cross
icon on the right side of the bar, as in the following screenshot:

Figure 16.2 – The remove button on the top bar component

Making OWL components reactive 523

Upon clicking the remove icon, our OWL component will be removed. The bar will
reappear when you reload the page.

How it works...
In step 1, we added a remove icon to the component. If you notice, we have added
a t-on-click attribute. This will be used to bind a click event. The value of the
attribute will be the method in the component. In our example, we have used t-on-
click="onRemove". This implies that when the user clicks on the remove icon, the
onRemove method in the component will be called. The syntax to define the event
is simple:

t-on-<name of event>="<method name in component>"

For example, if you want to call the method when the user moves the mouse over the
component, you can do so by adding the following code:

t-on-mouseover="onMouseover"

After adding the preceding code, whenever the user moves the mouse cursor over the
component, OWL will call the onMouseover method specified in the component.

In step 2, we have added the onRemove method. This method will be called when the
user clicks on the remove icon. In the method, we have called the destroy() method,
which will remove the component from the DOM. In the destroy() method, we are
receiving the JavaScript event object. destroy() is one of the default methods of the
OWL component. We will be seeing several default methods in the upcoming recipes.

There's more...
Event handling is not limited to the DOM events. You can use your custom events as well.
For instance, if you are manually triggering the event called my-custom-event, you
can use t-on-my-custom-event to catch custom triggered events.

Making OWL components reactive
OWL is a powerful framework and supports auto updates for the UI based on hooks. With
update hooks, a component's UI will be automatically updated when the internal state of
the component is changed. In this recipe, we will update the message in the component
based on user actions.

524 The Odoo Web Library (OWL)

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe.

How to do it...
In this recipe, we will add arrows around the text in the component. Upon clicking
the arrow, we will change the message. Perform the following steps to make the OWL
component reactive:

1. Update the XML template of the component. Add two buttons with an event
directive around the text. Also retrieve the message dynamically from the list:

static template = xml`

 <div class="bg-info text-center p-2">

 <i class="fa fa-arrow-left p-1"

 style="cursor: pointer;"

 t-on-click="onPrevious"> </i>

 <b t-esc="messageList[Math.abs(

 state.currentIndex%4)]"/>

 <i class="fa fa-arrow-right p-1"

 style="cursor: pointer;"

 t-on-click="onNext"> </i>

 <i class="fa fa-close p-1 float-right"

 style="cursor: pointer;"

 t-on-click="onRemove"> </i>

 </div>`

2. In the JavaScript file of the component, import the useState hook as follows:

const { Component, useState } = owl;

3. Add the constructor method to the component and initialize some variables
as follows:

constructor() {

 super(...arguments);

 this.messageList = [

Making OWL components reactive 525

 'Hello World',

 'Welcome to Odoo',

 'Odoo is awesome',

 'You are awesome too'

];

 this.state = useState({ currentIndex: 0 });

}

4. In the Component class, add methods to handle the user's click event:

onNext(ev) {

 this.state.currentIndex++;

}

onPrevious(ev) {

 this.state.currentIndex--;

}

Restart and update the module to apply the changes to the module. Following the update,
you will see the two arrow icons around the text like this:

Figure 16.3 – Arrows around the text

If you click on the arrow, the message text will be changed based on the list of messages in
the constructor.

526 The Odoo Web Library (OWL)

How it works...
In step 1, we updated the XML template of our component. Basically, we made two
changes to the template. We rendered the text message from the list of messages, and
we selected the message based on the value of currentIndex in the state variable. We
added two arrow icons around the text block. In the arrow icons, we added the t-on-
click attribute to bind the click event to the arrow.

In step 2, we imported the useState hook from OWL. This hook is used to handle the
state of the component. In step 3, we added a constructor. This constructor will be called
when you create an instance of the object. In the constructor, we added a list of messages
we want to show, and then we added the state variable using the useState hook. This
will make the component reactive. When the state is changed, the UI will be updated
based on the new state. In our example, we used currentIndex in the useState
hook. This implies that whenever the value of currentIndex changes, the UI will be
updated as well.

Important information
There is only one rule for defining hooks, which is, the hooks will only work
if you have declared them in the constructor. Several other types of hooks are
available, which you can find here: https://github.com/odoo/owl/
blob/master/doc/reference/hooks.md.

In step 4, we added methods to handle the click events of the arrow. Upon clicking the
arrow, we are changing the state of the component. As we are using a hook on the state,
the UI of the component will be automatically updated.

Understanding the OWL component life cycle
OWL components have several methods that help developers to create powerful and
interactive components. In this recipe, we will see important methods of the components
and the life cycle when these methods are called. In this recipe, we will add several
methods to the component, and we will log the message in the console to understand the
life cycle of the component.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe.

https://github.com/odoo/owl/blob/master/doc/reference/hooks.md
https://github.com/odoo/owl/blob/master/doc/reference/hooks.md

Understanding the OWL component life cycle 527

How to do it...
To add life cycle methods to the component, you need to carry out the following steps:

1. As we already have a constructor in the component, let's add a message to the
console like this:

constructor() {

 console.log('CALLED:> constructor');

...

2. Add the willStart method to the component:

async willStart() {

 console.log('CALLED:> willStart');

}

3. Add the mounted method to the component:

mounted() {

 console.log('CALLED:> mounted');

}

4. Add the willPatch method to the component:

willPatch() {

 console.log('CALLED:> willPatch');

}

5. Add the patched method to the component:

patched() {

 console.log('CALLED:> patched');

}

6. Add the willUnmount method to the component:

willUnmount() {

 console.log('CALLED:> willUnmount');

}

528 The Odoo Web Library (OWL)

Restart and update the module to apply the module changes. Following the update,
perform some operations, such as changing the message via arrows, and removing the
component. In the browser console, you will see the logs like this:

Figure 16.4 – Logs in the browser console

You may have different logs based on the operation you have performed on the
component.

How it works...
In this recipe, we have added several methods and added logged messages to the method.
You can use these methods based on your requirements. Let's see the life cycle of the
component and when these methods are called.

constructor(): The constructor is called first in the component life cycle. It will
be called when you initialize the component. You need to set the initial state of the
component here.

willStart(): The willStart method is called after the constructor and before
the rendering of the element. This is an asynchronous method; you can perform
asynchronous operations such as RPC here.

mounted(): The mounted method is called after the component is rendered and the
DOM added.

willPatch(): The willPatch method is called when the state of the component is
changed. This method is called before the element is re-rendered based on a new state.
In our example, this method will be called when you click on the arrow. But when this
method is called, the DOM will be based on the old values.

Adding an OWL field to the form view 529

patched(): The patched method works like the willPatch method. It will be called
when the state of the component is changed, the only difference being that the patched
method will be called after the element is re-rendered based on the new state.

willUnmount(): The willUnmount method is called just before the element is being
removed from the DOM. In our example, this method will be called when you remove the
component by clicking on the remove icon.

These are the life cycle methods of the component and you will need to use them as per
your requirements. For instance, the mounted and willUnmount methods can be used
to bind and unbind event listeners.

There's more...
There is one more method in the component life cycle, but it is used when you are using
subcomponents. OWL passes the parent component state via the props parameter,
and when props is changed, the willUpdateProps method is called. This is an
asynchronous method, which means you can perform an asynchronous operation such as
RPC here.

Adding an OWL field to the form view
Up to this point, we have learned about all the basics of OWL. Now we will move on to
more advanced aspects and create a field widget that can be used in the form view, just
like the field widget recipe from the previous chapter. In this recipe, we will create a color
picker widget that will save integer values based on the color selected.

To make the example more informative, we will use some advanced concepts of OWL. We
will use multiple components, custom events, external QWeb templates, and more.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe.

530 The Odoo Web Library (OWL)

How to do it...
Perform the following steps to add a new OWL field component to choose the colors on
the form view:

1. Add a color integer field to the library.book model as follows:

color = fields.Integer()

2. Add the same field to the form view, with a widget attribute as well:

<field name="color" widget="int_color"/>

3. Add the QWeb templates for the field at static/src/xml/qweb_
template.xml:

<?xml version="1.0" encoding="UTF-8"?>

<templates>

 <t t-name="OWLColorPill" owl="1">

 <span t-attf-class="o_color_pill
 o_color_{{props.pill_no}}
 {{props.active and

 'active' or ''}}"
 t-att-data-val="props.pill_no"
 t-on-click="pillClicked"

 t-attf-title="This color is used in

 {{props.book_count or 0 }} books." />

 </t>

 <span t-name="OWLFieldColorPills" owl="1"
 class="o_int_colorpicker"
 t-on-color-updated="colorUpdated">

 <t t-foreach="totalColors" t-as='pill_no'>

 <ColorPill t-if="mode === 'edit'

 or value == pill_no"
 pill_no='pill_no' active='value ==

 pill_no'

 book_count="colorGroupData[pill_no]"/>

 </t>

</templates>

Adding an OWL field to the form view 531

4. List the QWeb file in the module's manifest file:

"qweb": [

 'static/src/xml/qweb_template.xml',

],

5. Now we want to add some SCSS for the field at static/src/scss/field_
widget.scss. As the content of SCSS is too long, please find the content of
the SCSS file in this book's GitHub repository at https://github.com/
PacktPublishing/Odoo-13-Development-Cookbook-Fourth-
Edition/blob/master/Chapter16/05_owl_field/my_library/
static/src/scss/field_widget.scss.

6. Add the static/src/js/field_widget.js JavaScript file with the following
basic content:

odoo.define('my_field_widget', function (require) {

 "use strict";

 const { Component } = owl;

 const AbstractField = require(

 'web.AbstractFieldOwl');

 const fieldRegistry = require(

 'web.field_registry_owl');

 // Place steps 7 and 8 here

});

7. In field_widget.js, add the color pill component as follows:

class ColorPill extends Component {

 static template = 'OWLColorPill';

 pillClicked() {

 this.trigger('color-updated', {val:

 this.props.pill_no});

 }

}

https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/blob/master/Chapter16/05_owl_field/my_library/static/src/scss/field_widget.scss
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/blob/master/Chapter16/05_owl_field/my_library/static/src/scss/field_widget.scss
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/blob/master/Chapter16/05_owl_field/my_library/static/src/scss/field_widget.scss
https://github.com/PacktPublishing/Odoo-13-Development-Cookbook-Fourth-Edition/blob/master/Chapter16/05_owl_field/my_library/static/src/scss/field_widget.scss

532 The Odoo Web Library (OWL)

8. In field_widget.js, add the field color component by extending
AbstractField like this:

class FieldColor extends AbstractField {

 static supportedFieldTypes = ['integer'];

 static template = 'OWLFieldColorPills';

 static components = { ColorPill };

 // Add methods from step 9 here

}

fieldRegistry.add('int_color', FieldColor);

9. Add the given methods to FieldComponent created in step 8:

 constructor(...args) {

 super(...args);

 this.totalColors = Array.from({length: 10},

 (_, i) => (i + 1).toString());

 }

 async willStart() {

 this.colorGroupData = {};

 var colorData = await this.rpc({

 model: this.model, method: 'read_group',

 domain: [], fields: ['color'],

 groupBy: ['color'],

 });

 colorData.forEach(res => {

 this.colorGroupData[res.color] =

 res.color_count;

 });

 }

 colorUpdated(ev) {

 this._setValue(ev.detail.val);

 }

Adding an OWL field to the form view 533

10. Add JavaScript and an SCSS file to the backend assets as follows:

<template id="assets_backend" inherit_id="web.assets_
backend">

 <xpath expr="." position="inside">

 <script src="/my_library/static/src/js

 /component.js" type="text/javascript" />

 <script src="/my_library/static/src/js

 /field_widget.js" type="text/javascript"

 />

 <link href="/my_library/static/src/scss

 /field_widget.scss" rel="stylesheet"

 type="text/scss" />

 </xpath>

</template>

Restart and update the module to apply the module changes. Open the book's form view
in edit mode. You will be able to see the color picker widget as in the following screenshot:

Figure 16.5 – Color picker OWL widget

This field looks just like the color widget from the last chapter, but the actual difference
lies under the hood. This new field is built with OWL, while the previous one was built
with widgets.

534 The Odoo Web Library (OWL)

How it works...
In step 1, we added an integer field to the library.book model. In step 2, we added the
field to the form view of the book.

In step 3, we added the QWeb template file. If you notice, we added two templates to
the file, one for the color pill and the other for the field itself. We used two templates
because we want to see the concept of the subcomponent. If you observe the template
closely, you will find that we have used the <ColorPill> tag. This will be used to
instantiate the subcomponent. On the <ColorPill> tag, we have passed the active
and pill_no attributes. These attributes will be received as props in the template of the
subcomponent. Also note that the t-on-color-updated attribute is used to listen to
the custom event triggered from the subcomponent.

Important information
Odoo v14 uses both the widget system and the OWL framework. Both use
QWeb templates, but to differentiate OWL QWeb templates from the legacy
QWeb template, you will need to use the owl="1" attribute in the template
definition.

In step 4, we listed our QWeb template in the manifest. This will automatically load our
template in the browser.

In step 5, we added SCSS for the color. This will help us to have a beautiful UI for the
color picker.

In step 6, we added JavaScript for the field component. We imported the OWL utility
and we also imported AbstractField and fieldRegistry. AbstractField is
the abstract OWL component for the fields. It contains all the basic elements that are
required to create the field. fieldRegistry is used to list the OWL component as a
field component.

In step 7, we created the ColorPill component. The template variable on the
component is the name of the template that is loaded from the external XML file. The
ColorPill component has the pillClicked method, which is called when the user
clicks on the color pill. Inside the method body, we have triggered the color-updated
event, which will be captured by the parent FieldColor component as we used t-on-
color-updated on the FieldColor component.

Adding an OWL field to the form view 535

In step 8 and step 9, we created the FieldColor component by extending
AbstractField. We used the AbstractField component because it will have
all the utilities that are required to create the field widget. If you notice, we used the
components static variable at the start. You need to list the components via the
components static variable when you are using subcomponents in the template. We
also added the willStart method in our example. The willStart method is an
asynchronous method, so we have called RPC (network call) to fetch data regarding
the number of books used for a particular color. Toward the end, we added the
colorUpdated method, which will be called when the user clicks on the pill. So, we
are changing the values of the field. The setValue method is used to set the field values
(which will be saved in the database). Note here that the data triggered from the child
component is available under the detail attribute in the event parameter. Finally, we
registered our widget in fieldRegistry, implying that henceforth, we will be able to
use our field via the widget attribute in the form view.

In step 10, we loaded JavaScript and SCSS files into the backend assets.

17
In-App Purchasing

with Odoo
Odoo has had built-in support for in-app purchasing (IAP) since version 11. IAP is used
to provide recurring services without any complex configurations. Usually, apps purchased
from the app store only require a one-time payment from the customer, because they are
normal modules and once the user has purchased and started using the module, it won't
cost the developer anything. In contrast to this, IAP apps are used to provide services to
users, and so there is an operational cost to providing the continuous service. In such
cases, it is not possible to provide a service with just the single initial purchase. The service
provider needs something that charges the user in a recurring manner, based on usage.
Odoo's IAP fixes these issues and provides a way to charge based on usage.

In this chapter, we will cover the following recipes:

• IAP concepts

• Registering an IAP service in Odoo

• Creating an IAP service module

• Authorizing and charging IAP credits

• Creating an IAP client module

• Displaying offers when an account lacks credit

538 In-App Purchasing with Odoo

There are several use cases where you can use IAP, such as a fax service for sending
documents or an SMS service. In this chapter, we will create a small IAP service that will
provide us with information about books based on the ISBN numbers we enter.

Technical requirements
The technical requirement for this chapter is the online Odoo platform.

All the code used in this chapter can be downloaded from the GitHub repository
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter17.

IAP concepts
In this recipe, we will explore the different entities that are a part of the IAP process. We
will also look at the role of each entity and how they combine to complete the IAP process.

How it works...
There are three main entities in the IAP process: the customer, the service provider, and
Odoo itself. These are described as follows:

• The customer is the end user who wants to use the service. In order to use the
service, the customer needs to install the application provided by the service
provider. The customer then needs to purchase a service plan according to their
usage requirements. With that, the customer can start to use the service straight
away. This prevents difficulties for the customer, as it is not necessary to carry out
complex configurations. Instead, they just pay for the service and start to use it.

• The service provider is the developer that wants to sell the service (probably you, as
you are the developer). The customer will ask the provider for the service, at which
point the service provider will check whether the customer purchased a valid plan
and whether there is enough credit in the customer's account. If the customer has
enough credit, the service provider will deduct the credit and provide the service to
the customer.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter17
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter17

IAP concepts 539

• Odoo is a kind of broker in this. It provides the medium for handling payments,
credits, plans, and so on. Customers purchase the service credit from Odoo, and
the service provider draws this credit when serving the service. Odoo then bridges
the gap between the customer and the service provider, so the customer has no
need to do complex configurations and the service provider has no need to set up
a payment gateway, customer account management, and so on. In return, Odoo
takes a commission fee from the sale. At the time of writing this book, Odoo takes
25% commission from the packs.

There is also an optional entity in the process, which is the external service. In some
cases, service providers use some external services. However, we will ignore external
services here, as they are the secondary service provider. An example of this could be an
SMS service. If you are providing an SMS IAP service to Odoo users, then you (the service
provider) will use an SMS service internally.

The IAP service flow
Now, we will look at how all IAP entities work together to provide the service. The
following diagram illustrates the IAP process:

Figure 17.1 – IAP workflow

Here is an explanation of every step of the IAP service flow:

1. A Customer will make a request to the Service Provider for a service. With this
request, the Customer will pass the account token, which will be used by the
Service Provider to identify the user. (Note the customers will have your module
installed on their server.)

540 In-App Purchasing with Odoo

2. After receiving a request from the Customer, the Service Provider will ask Odoo
whether the Customer has enough credit in their account. If the Customer has
enough credit, then it will create the transaction to reserve that credit before
providing the service.

3. After reserving the credit, the Service Provider will perform the service. In some
cases, the Service Provider will call an external service to perform the requested
service.

4. After performing the service requested by the Customer, the Service Provider
goes back to Odoo to capture the credit reserved in step 2; if the requested service
cannot be served due to an error, the Service Provider will ask Odoo to release the
reserved credit.

5. Finally, the Service Provider will get back to the Customer to notify them that
the requested service has been served. Some services might return the resulting
information; here, you will get the result of the service. This resulting information is
used by the Customer based on their specifications (depending on the service).

There's more...
If the customer does not have enough credit, the service flow is as follows:

1. The customer requests the service (just like in the previous flow).

2. The service provider gets the request and asks Odoo whether the user has enough
credit. Suppose that the customer does not have enough credit.

3. The service provider returns to the customer and informs them that there is not
enough credit in the account, showing information (an Odoo service packs link) on
where the user can purchase the service.

4. The customer is redirected to Odoo and purchases the credit for the service.

Registering an IAP service in Odoo 541

Registering an IAP service in Odoo
In order to draw credit from the customer account, the service providers need to register
their services on Odoo. You also define plans for the services. The user will purchase your
plans through this registered service. In this recipe, we will register our service on Odoo
and define plans for our service.

Getting ready
To sell the services from the IAP platform, the service provider needs to register services
and plans to Odoo. We are going to register our service on https://iap-sandbox.
odoo.com/. This IAP endpoint is used for testing purposes. You can purchase a service
pack for free. For production, you need to register for a service at https://iap.odoo.
com. For this recipe, we will use the sandbox IAP endpoint.

How to do it...
Follow these steps to create an IAP service on Odoo:

1. Open https://iap-sandbox.odoo.com/ and log in (sign up if you don't
have an account).

2. Click on the My Services button on the home page.

3. Click on the Add a Service button to create a new service.

https://iap-sandbox.odoo.com/
https://iap-sandbox.odoo.com/
https://iap.odoo.com
https://iap.odoo.com
https://iap-sandbox.odoo.com/

542 In-App Purchasing with Odoo

4. This will open a form like the one seen in the following screenshot. Here, fill in
information, including the Service Logo, Technical Name (must be unique), Unit
Name, and Private Policy fields:

Figure 17.2 – Registering an IAP service

5. Saving a service will give you a service key, as shown in the following screenshot.
Note the service key at this point, as it will not be displayed again:

Registering an IAP service in Odoo 543

Figure 17.3 – A new IAP service

6. Create a few packs (plans) for the service by clicking on the Add a pack button
in the Packs section – for example, Get 50 books info in 10 Euro. The following
screenshot shows the page to create a new pack:

Figure 17.4 – A new pack for IAP

544 In-App Purchasing with Odoo

After the configuration is complete, your service page will look like this:

Figure 17.5 – The IAP service after configuring the packs

You can add a new pack at any time. You can also change the pack at any time, but at the
time of writing this book, there is no option to delete a pack.

How it works...
We have created an IAP service at https://iap-sandbox.odoo.com/, as we want
to test the IAP service before moving the service into production. Let's explore the use of
the fields that we filled in while creating the service:

• The Technical Name value is used to identify your service, and it must be a unique
name. We have added the book_isbn technical name here. (It is not possible to
change this later.)

• The Label, Description, and Service Logo values are used for informational
purposes. This information will be displayed on the web page when the user is
purchasing the service.

• The Unit Name value is the unit by which your service is sold. For example, in an
SMS service, your unit name will be SMS (for example, 100 SMS costs $5). In our
case, we have used a unit name of Books info.

https://iap-sandbox.odoo.com/

Creating an IAP service module 545

• Trial Credit is for the free credit provided to a customer for testing. This is only
provided once per customer. Also, trial credit only works if the user has a valid
enterprise contract so that any misuse of free credit can be avoided.

• Privacy Policy is for the URL of the privacy policy for your service.

After submitting these details, your service will be created, and it will display the service
key. Refer to the screenshot shown in step 5 of this recipe for more information. The
service key will be used to capture customer credit during a service request. Store this key
securely, because it won't be displayed again, although it is possible to generate a new key
from the same page; but once you generate a new key, the old key will stop working.

We still need to create plans for our service. You need to provide the plan name,
description, logo, amount, and price. The Amount field is used for the number of service
units for that plan. The Price field is used for defining the amount that a user needs to
pay to get this plan. In step 6 of this recipe, we created a plan for 50 books info in 10 Euro.
Here, Books info is the unit type that we submitted during the creation of the service.
This means that if a user purchases this plan, they will be able to get the information for
50 books.

Note
Odoo takes a 25% commission from this price, so define your service plan
price accordingly.

Now, we will create an IAP service and an IAP client module in the following sections.

Creating an IAP service module
In this recipe, we will create a service module to be used by the service provider. This
module will accept the IAP request from the customer and return the service result in the
response.

Getting ready
We will create the iap_isbn_service module. This service module will handle
customer IAP requests. Customers will send book info requests with ISBN numbers. The
service module will capture the credit from the customer account and return information
such as the name, author, and cover image.

546 In-App Purchasing with Odoo

For ease of understanding, we will develop a service module by splitting it into two
recipes. In this recipe, we will create a basic module that creates a table for the book's
information. Upon customer request, the service provider will return the book
information by searching in this table. In the next recipe, we will add the second part of
the service module; in that module, we will add the code to capture the credits and return
the book info.

How to do it...
Follow these steps to generate a basic service module:

1. Create a new iap_isbn_service module and add __init__.py:

from . import models
from . import controllers

2. Add __manifest__.py, with the following content:

{
 'name': "IAP ISBN service",
 'summary': "Get books information by ISBN number",
 'website': "http://www.example.com",
 'category': 'Uncategorized',
 'version': '14.0.1',
 'author': "Parth Gajjar",
 'depends': ['iap', 'web', 'base_setup'],
 'data': [
 'security/ir.model.access.csv',
 'views/book_info_views.xml',
 'data/books_data.xml',
]
}

3. Add a book.info model at models/book_info.py, with a method to fetch
the book data:

from odoo import models, fields, api

class BookInfo(models.Model):
 _name = 'book.info'

 name = fields.Char('Books Name', required=True)
 isbn = fields.Char('ISBN', required=True)
 date_release = fields.Date('Release Date')

Creating an IAP service module 547

 cover_image = fields.Binary('BooksCover')
 author_ids = fields.Many2many('res.partner',
string='Authors')

 @api.model
 def _books_data_by_isbn(self, isbn):
 book = self.search([('isbn', '=', isbn)],
limit=1)
 if book:
 return {
 'status': 'found',
 'data': {
 'name': book.name,
 'isbn': book.isbn,
 'date_release': book.date_release,
 'cover_image': book.cover_image,
 'authors': [a.name for a in book.
author_ids]
 }
 }
 else:
 return {
 'status': 'not found',
 }

4. Add an http controller in the controller/main.py file (don't forget to add the
controllers/__init__.py file):

from odoo import http
from odoo.http import request

class Main(http.Controller):
 @http.route('/get_book_data', type='json',
auth="public")
 def get_book_data(self):
 # We will capture credit here
 return {
 'test': 'data'
 }

548 In-App Purchasing with Odoo

5. Add access rules to security/ir.model.access.csv and list the file in the
module manifest file:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink
acl_book_backend_user,book_info,model_book_info,base.
group_user,1,1,1,1

6. Add views, menus, and actions to views/book_info_views.xml:

<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <!-- Form View -->
 <record id="book_info_view_form" model="ir.ui.view">
 <field name="name">Book Info Form</field>
 <field name="model">book.info</field>
 <field name="arch" type="xml">
 <form>
 <sheet>
 <field name="cover_image"
widget='image' class="oe_avatar"/>
 <div class="oe_title">
 <label for="name" class="oe_edit_
only"/>
 <h1>
 <field name="name" class="oe_
inline"/>
 </h1>
 </div>
 <group>
 <group>
 <field name="isbn"/>
 <field name="author_ids"
widget="many2many_tags"/>
 </group>
 <group>
 <field name="date_release"/>
 </group>
 </group>
 </sheet>
 </form>
 </field>
 </record>

Creating an IAP service module 549

 <!-- Add step 7 and 8 here -->

</odoo>

7. Add a tree view for the book info:

 <!-- Tree(list) View -->
 <record id="books_info_view_tree" model="ir.ui.view">
 <field name="name">Book Info List</field>
 <field name="model">book.info</field>
 <field name="arch" type="xml">
 <tree>
 <field name="name"/>
 <field name="date_release"/>
 </tree>
 </field>
 </record>

8. Add actions and menu items:

<!-- action and menus -->
 <record id='book_info_action' model='ir.actions.act_
window'>
 <field name="name">Book info</field>
 <field name="res_model">book.info</field>
 <field name="view_mode">tree,form</field>
 </record>
 <menuitem name="Books Data" id="books_info_base_menu"
/>
 <menuitem name="Books" id="book_info_menu"
parent="books_info_base_menu" action="book_info_action"/>

9. If you want, you can add some sample book data. We have added sample data to the
module via the data/books_data.xml file (don't forget to add cover images to
the given directory).

550 In-App Purchasing with Odoo

After installing the module, you will see a new menu with book data, as follows:

Figure 17.6 – Book data for the IAP service module

How it works...
We have now created the iap_isbn_service module. We have created a new book.
info table. Consider this table the main table, where we will store data for all of the
books. When the customer requests book data, we will search in this table. If the requested
data is found, we will charge credits in exchange for book data.

Note
If you want to create this service for commercial purposes, you will need to
have information about every book in the world. In the real world, you will
need to have an external service as the book's information source. For our
exercise, assume that we have the data of all of the books in the book.info
table, and we will give book data from this table only.

In the model, we have also created the _books_data_by_isbn() method. This
method will find a book given an ISBN number and generate the proper data so that it
can be sent back to the customer. The status key in the result will be used to indicate
whether the book data is found. It will be used to release reserved credit when the book
data is not found.

We have also added a /get_book_data route. The IAP customer will make a request
using this URL to get the book details. We still need to add the code for capturing IAP
credit for the service, which will be done in the next recipe. However, for testing purposes,
you can make a test request through curl, like this:

Authorizing and charging IAP credits 551

curl --header "Content-Type: application/json" \
 --request POST \
 --data "{}" \
 http://localhost:8069/get_book_data

This will return something like this:

{"jsonrpc": "2.0", "id": null, "result": {"test": "data"}}.

The rest of the steps in this recipe are from previous recipes and don't need detailed
explanation. In the next recipe, we will update our module to capture the customer's credit
and return the book data to them.

Authorizing and charging IAP credits
In this recipe, we will complete the IAP service module. We will use the IAP platform to
authorize and capture credit from the customer account. We will also add an optional
configuration to save the service key generated in the Registering an IAP service in Odoo
recipe of this chapter.

Getting ready
For this recipe, we will be using the iap_isbn_service module.

As we are using the IAP sandbox service, we need to set an IAP endpoint in the system
parameters. To set the IAP sandbox endpoint, follow these steps:

1. Activate developer mode.

2. Open Technical | Parameters | System Parameters.

3. Create a new record and add a key and a value, as follows:

Figure 17.7 – Setting an endpoint for the IAP sandbox

552 In-App Purchasing with Odoo

How to do it...
In order to complete the service module, we will add a configuration option to the store
service key. Follow these steps to add a new field to set isbn_service_key in the
general settings:

1. Add an isbn_service_key field in res.config.settings:

from odoo import models, fields

class ConfigSettings(models.TransientModel):
 _inherit = 'res.config.settings'

 isbn_service_key = fields.Char("ISBN service key",
 config_parameter='iap.
isbn_service_key')

2. Add an isbn_service_key field in the general settings view:

<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <record id="view_general_config_isbn_service"
model="ir.ui.view">
 <field name="name">Configuration: IAP service
key</field>
 <field name="model">res.config.settings</field>
 <field name="inherit_id" ref="base_setup.res_
config_settings_view_form" />
 <field name="arch" type="xml">
 <div id="business_documents"
position="before">
 <h2>IAP Books ISBN service</h2>
 <div class="row mt16 o_settings_
container">
 <div class="col-12 col-lg-6 o_
setting_box">
 <div class="o_setting_right_
pane">
 <span class="o_form_
label">IAP service key
 <div class="text-muted">
 Generate service in odoo IAP
and add service key here
 </div>
 <div class="content-group">

Authorizing and charging IAP credits 553

 <div class="mt16 row">
 <label for="isbn_
service_key"
 class="col-3
col-lg-3 o_light_label"/>
 <field name="isbn_
service_key"
 class="oe_
inline" required="1"/>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </field>
 </record>
</odoo>

3. Update the iap_isbn_service module. After the module updates, you will
see a field in General Settings to store a service key, as shown in the following
screenshot. If you remember, we generated the service key in the Registering an IAP
service in Odoo recipe of this chapter. Add the generated service key in this field. See
the following screenshot for more information:

Figure 17.8 – Setting the service key in the configuration

4. Now, we will update the /get_book_data controller to capture the customer
credit. Update the main.py file as follows:

from odoo import http
from odoo.http import request
from odoo.addons.iap.tools import iap_tools

class Main(http.Controller):
 @http.route('/get_book_data', type='json',

554 In-App Purchasing with Odoo

auth="public")
 def get_book_data(self, account_token, isbn_number):
 service_key = request.env['ir.config_parameter'].
sudo()
 .get_param('iap.isbn_service_
key', False)
 if not service_key:
 return {
 'status': 'service is not active'
 }
 credits_to_reserve = 1
 data = {}
 with iap_tools.iap_charge(request.env, service_
key,
 account_token, credits_to_
reserve):
 data = request.env['book.info'].sudo()._
books_data_by_isbn(isbn_number)
 if data['status'] == 'not found':
 raise Exception('Book not found')
 return data

Update the module to apply these changes.

How it works...
In order to draw credit from the customer's account, we will need a service key generated
from the IAP platform. In the Registering an IAP service in Odoo recipe of this chapter,
we generated a service key. (It's no problem if you have lost the service key; it can be
regenerated from the service page.) We have added an isbn_service_key field in the
general settings so that we can store a service key in Odoo. You may have noticed that we
used the config_parameter attribute in the file definition.

The use of this attribute in the field will store the value in the ir.config_parameter
model, also known as System Parameters. After saving it, you can check its value in the
Technical | Parameters | System Parameters menu, in developer mode. While capturing
IAP credits, we will retrieve the service key from System Parameters. To retrieve the
values from System Parameters, you can use get_param(). For example, you can fetch
a service key like this:

self.env['ir.config_parameter'].sudo().get_param('iap.isbn_
service_key', False)

Authorizing and charging IAP credits 555

Here, the first argument is the key of the parameter that has a value you want to access,
and the second argument is a default value. If the requested key is not present in the
database, then the default value will be returned.

Next, we updated the /get_book_data route. Now, it is accepting two arguments:

• account_token, which is the customer token used to identify the user. The credit
purchased by the customer for the service will be linked to this account_token
on the IAP platform. Service providers will send this token while capturing credit.

• isbn_number is the ISBN number of the book whose information the customer
wants in exchange for credit.

Note
These arguments are not fixed here. Our example service needs isbn_
number, so we have passed it. However, you can pass any number of
arguments that you want. Just make sure that you have passed account_
token, because without it, you cannot capture credit from the customer
account.

The IAP service provides the iap_tools.iap_charge() helper method, which
handles the process of capturing credit from the customer account. The iap_charge()
method accepts four parameters: the environment, the provider service key, the customer
account token, and the amount of credit to capture. The iap_charge() method
manages the following things:

• Creating the transaction object and reserving the specified number of
credit. If a customer account doesn't have enough credit, then it will raise
InsufficientCreditError.

• If enough credit is found in a customer account, it will run code in the with block.

• If the code in the with block runs successfully, it captures the received credit.

• If the code in the with block generates an exception, it will release the reserved
credit, as the service request cannot be completed.

556 In-App Purchasing with Odoo

In the previous example, we used the same iap_tools.iap_charge() method to
capture credit for a book request. We used our service key and customer account token to
reserve one credit for the book info. Then, inside the with block, we used the _books_
data_by_isbn() method to get book data based on the ISBN number. If the book
data is found, then it will execute the with block without any errors and one reserved
credit will be deducted from the customer account. Later, we will return this data to the
customer. If the book data is not found, then we raise the exception so that the reserved
credit is released.

There's more...
In our example, we are handling the request of only one book's data, and capturing the
single credit is simple; but things get complicated with multiple credits. A complex pricing
structure can introduce a few corner cases. Let's look at this issue through the following
example. Suppose that we want to handle multiple book requests. In this case, a customer
has requested the data of 10 books, but we only have the data of 5 books. Here, if we
complete the with block without encountering any errors, iap_charge() will capture
10 credits, which is incorrect, because we only have the data for a certain number of
books. Furthermore, if we raise the exception, then it will release all 10 credits and show
the customer that the book info is not found. To fix this issue, Odoo provides the object
of the transaction in the with block. In some cases, the services cannot fully serve a
request. For example, say a user asked for the data of 10 books but you only have the data
for 5 books. In such cases, you can change the actual credit amount on the go and capture
partial credits. See the following example for a further explanation:

...
isbn_list = [<assume list of 10 isbn number>]
credits_to_reserve = len(isbn_list)
data_found = []
with iap_tools.iap_charge(request.env, service_key, account_
token, credits_to_reserve) as transection:
 for isbn in isbn_list:
 data = request.env['books.info']._books_data_by_
isbn(isbn)
 if data['status'] == 'found':
 data_found.appned(data)
 transection.credit = len(data_found)
return data_found

In the preceding code block, we have updated the value of the credit to capture on the fly,
according to transection.credit; this is how we can only charge credit for the book
data that is found.

Creating an IAP client module 557

See also
• IAP is not limited to the Odoo framework. You can develop a service provider

module for any other platform or framework. Just make sure that it can handle
JSON-RPC2 (https://www.jsonrpc.org/specification) requests.

• If you develop a service provider in any other platform, you will also need to
manage the transaction manually by using IAP endpoints. You will need to
authorize and capture credit by requesting IAP endpoints. You can get endpoint
information at https://www.odoo.com/documentation/12.0/
webservices/iap.html#json-rpc2-transaction-api.

Creating an IAP client module
In the previous recipe, we created the IAP service module. Now, we will create an IAP
client module to complete the IAP service flow.

Getting ready
We will need the my_library module from Chapter 3, Creating Odoo Add-On Modules.
We will add a new button in the book's form view and clicking that button will create a
request to an IAP service and fetch the book data.

As per the IAP service flow, the customer makes the request to the service provider. Here,
to register a customer's request, we need to run a separate server for the IAP service. If
you want to test this on the same machine, you can run the service instance on a different
port and different database, like this:

./odoo-bin -c server-config -d service_db --db-filter=^service_
db$ --http-port=8070

This will run the Odoo server on port 8070. Make sure that you have installed the service
module in this database and have added the IAP service key. Note that this recipe is
written assuming that you have an IAP service running on http://localhost:8070.

https://www.jsonrpc.org/specification
https://www.odoo.com/documentation/12.0/webservices/iap.html#json-rpc2-transaction-api
https://www.odoo.com/documentation/12.0/webservices/iap.html#json-rpc2-transaction-api

558 In-App Purchasing with Odoo

How to do it...
We will create a new iap_isbn_client module. This module will inherit the my_
library module and add a button in the book's form view. Clicking on a button will
send a request to our IAP service running on port 8090. The IAP service will capture the
credit and return the information of the requested book. We will write this information in
the book's record. Follow these steps to complete the IAP client module:

1. Create a new iap_isbn_client module and add __init__.py:

from . import models

2. Add __manifest__.py, with the given content:

{
 'name': "Books ISBN",
 'summary': "Get Books Data based on ISBN",
 'website': "http://www.example.com",
 'category': 'Uncategorized',
 'version': '14.0.1',

 'author': "Parth Gajjar",
 'depends': ['iap', 'my_library'],
 'data': [
 'views/library_books_views.xml',
]
}

3. Add models/library_book.py and add a few fields by inheriting the
library.book model:

from odoo import models, fields, api
from odoo.exceptions import UserError
from odoo.addons.iap.tools import iap_tools

class LibraryBook(models.Model):
 _inherit = 'library.book'

 cover_image = fields.Binary('Books Cover')
 isbn = fields.Char('ISBN')

Creating an IAP client module 559

4. Add the fetch_book_data() method in the same model. This will be called
upon a button click:

def fetch_book_data(self):
 self.ensure_one()
 if not self.isbn:
 raise UserError("Please add ISBN number")

 user_token = self.env['iap.account'].get('book_isbn')
 params = {
 'account_token': user_token.account_token,
 'isbn_number': self.isbn
 }
 service_endpoint = 'http://localhost:8070'
 result = iap_tools.iap_jsonrpc(service_endpoint + '/
get_book_data', params=params)
 if result.get('status') == 'found':
 self.write(self.process_result(result['data']))
 return True

5. Add the process_result() method to process the IAP service's response:

@api.model
def process_result(self, result):
 authors = []
 existing_author_ids = []
 for author_name in result['authors']:
 author = self.env['res.partner'].
search([('name','=',author_name)], limit=1)
 if author:
 existing_author_ids.append(author.id)
 else:
 authors.append((0, 0, {'name': author_name}))
 if existing_author_ids:
 authors.append((6, 0, existing_author_ids))
 return {
 'author_ids': authors,
 'name': result.get('name'),
 'isbn': result.get('isbn'),
 'cover_image': result.get('cover_image'),
 'date_release': result.get('date_release'),
 }

560 In-App Purchasing with Odoo

6. Add views/library_books_views.xml, and add a button and fields by
inheriting the book's form view:

<?xml version="1.0" encoding="utf-8"?>
<odoo>

 <record id="library_book_view_form_inh" model="ir.
ui.view">
 <field name="name">Library Book Form</field>
 <field name="model">library.book</field>
 <field name="inherit_id" ref="my_library.library_
book_view_form"/>
 <field name="arch" type="xml">
 <xpath expr="//group" position="before">
 <header>
 <button name="fetch_book_data"
string="Fetch Book Data" type="object"/>
 </header>
 </xpath>
 <field name="date_release" position="after">
 <field name="isbn"/>
 <field name="cover_image" widget="image"
class="oe_avatar"/>
 </field>
 </field>
 </record>

</odoo>

Install the iap_isbn_client module. This will add a Fetch Book Data button to the
book form. After doing this, add a valid ISBN number (for example, 1788392019) and
click on the button. This will make a request and fetch the data from the service. If you
are making the IAP service call for the first time, then your Odoo instance won't have
information about the linked account, so Odoo will raise a popup to buy the credits,
as follows:

Figure 17.9 – Alert for insufficient balance

Creating an IAP client module 561

Upon clicking on the Buy credits at Odoo button, you will be redirected to the IAP
service page, where you will see the information about the packs available to purchase.
For our recipe, you will see the packs that we defined while registering our service in
the Registering an IAP service in Odoo recipe of this chapter. Take a look at the following
screenshot: there is a list of packs to purchase:

Figure 17.10 – IAP packs to purchase

As we are using the sandbox endpoint, you can buy any pack without any payment being
necessary. After that, you can request the book information from the book's form view.

How it works...
We have created a /get_book_data route in the service module. This route is used to
handle a customer's IAP requests. So, from this client module, we will make a JSON-RPC
request to that route. This IAP request will capture the credit and fetch the book's data.
Luckily, the IAP module provides an iap_jsonrpc wrapper to make the jsonrpc
request, so we will use it.

The library.book model of the my_library module doesn't have the ISBN
and cover_image field, so we have extra fields in the library.book model by
inheritance. Refer to the Adding features to a model using inheritance recipe from Chapter
4, Application Models. We have added fields through inheritance because we don't want to
use these fields when the iap_isbn_client module is not installed.

In order to initiate a request, we have added a button to the book's form view through
inheritance. A button click will trigger the fetch_book_data() method, and in that
method, we have made the jsonrpc request to the service endpoint. With the request,
we have passed two parameters: the customer account tokens and the ISBN number for
the book data.

562 In-App Purchasing with Odoo

You can get a customer account token from the get() method of the iap.account
model. The token generation is automatic. You just need to call the get() method with
the name of the service. In our case, the service name is book_isbn. This will return
the record set of the customer IAP account, and you can grab the customer token's
account_token field.

We have made a jsonrpc request to fetch the book info. If the customer doesn't have
enough credit, the service module will generate InsufficientCreditError.
Now, jsonrpc will handle this exception automatically, and it will display a popup to
the customer to purchase the credit. The popup will have a link to the page where the
customer can purchase the service plans. As we are using the sandbox, you can get any
pack without payment being needed. However, in production, the customer needs to
make a payment for the service.

Upon a button click, if everything goes well, the customer has enough credit, and our
database has data for the requested ISBN, the credit will be deducted from the customer's
account and iap_jsonrpc will return the book's data. Then, we simply pass the result to
the process_result() method and write data to the book's record.

There's more...
If you want to find out the amount of credit remaining for the services, you can see it at
the link provided on the dashboard:

Figure 17.11 – View your active services and balance

Also, the iap_tools.iap_charge() method supports one more parameter,
description, which you can pass as follows:

...
with iap_tools.iap_charge(request.env, service_key, account_
token, credits_to_reserve, description="For the book info"):
...

Displaying offers when an account lacks credits 563

If you pass description while capturing credits, the customer will be able to see the
description for the deducted credit in the IAP portal.

Displaying offers when an account lacks
credits
If you make an IAP service request after all of the purchased credits are consumed, then
the service module will generate InsufficientCreditError, and the client-side
module will handle this error automatically and display a popup. Whenever all of your
IAP account credit is consumed, Odoo will display a popup as in the following screenshot
to prompt the purchase of more credit:

Figure 17.12 – An alert shown for an insufficient balance

The default popup is too simple and does not provide enough information. In this recipe,
we will look at how you can change the content of this popup with an attractive template.

Getting ready
We will be using the iap_isbn_service module for this recipe. The offer template
is created on the IAP service provider module, so it can be changed at any time without
updating the client module.

How to do it...
Follow these steps to add a custom credit template:

1. Add a template with service information at views/templates.xml:

<odoo>
<template id="no_credit_info" name="No credit info">
 <section class="jumbotron text-center bg-primary">
 <div class="container pb32 pt32">
 <h1 class="jumbotron-heading">Library ISBN</
h1>
 <p class="lead text-muted">
 Get full book information with cover

564 In-App Purchasing with Odoo

image just by the ISBN number.
 </p>
 <span class="badge badge-warning"
style="font-size: 30px;">
 20% Off

 </div>
 </section>
 <div class="container">
 <div class="row">
 <div class="col">
 <div class="card mb-3">
 <div class="card-header">
 <i class="fa fa-database"/> Large
books database
 </div>
 <div class="card-body">
 <p class="card-text">
 We have largest book
database. It contains more
 then 2500000+ books.
 </p>
 </div>
 </div>
 </div>
 <div class="col">
 <div class="card mb-3">
 <div class="card-header">
 <i class="fa fa-image"/>
 With cover image
 </div>
 <div class="card-body">
 <p class="card-text">
 More than 95% of our books
having high quality
 book cover images.
 </p>
 </div>
 </div>
 </div>
 </div>
 </div>
</template>
</odoo>

Displaying offers when an account lacks credits 565

2. Add a template to __manifest__.py:

...
 'data': [
 'security/ir.model.access.csv',
 'views/book_info_views.xml',
 'data/books_data.xml',
 'views/res_config_settings.xml',
 'views/templates.xml'
]
...

3. Add a template reference to iap.charge at controllers/main.py:

...
with iap_tools.iap_charge(request.env, service_key,
account_token, credits_to_reserve, credit_template='iap_
isbn_service.no_credit_info'):
 data = request.env['book.info'].sudo()._books_data_
by_isbn(isbn_number)
 if data['status'] == 'not found':
 raise Exception('Book not found')

Update the module to apply the changes.

Figure 17.13 – Offers shown for an insufficient balance
After the update, you will see a credit popup if all of the customer's credit is
consumed, as indicated in Figure 17.13.

566 In-App Purchasing with Odoo

How it works...
In order to display an attractive popup on the client side, we need to create a QWeb
template. In step 1, we created the QWeb template, no_credit_info. This is made with
simple bootstrap content. Note that it just contains static HTML content. In step 2, we
added the template file to the app manifest.

After designing the template, you need to pass the template XML reference to the iap_
tools.iap_charge() method. This can be passed through the optional credit_
template parameter. In step 3, we passed a template reference to the charge method.
After passing the template, if InsufficientCreditError is raised, then the template
will be passed along with the error message to the customer. On the client side, if an error
message is received with the template body, then this custom template will be displayed in
a popup instead of the default popup.

There's more...
We don't have an image in the template, but if you want to use an image in the template,
you need to be extra careful. The reason is that here, you cannot use an absolute image
URL as you normally would. Because the service module is running on a separate server,
the popup will not display the image. To fix this issue, you need to pass a full image URL
with the domain, as this template is going to be displayed on the client screen.

18
Automated Test

Cases
When it comes to developing large applications, using automated test cases is a good
practice for improving the reliability of your module. This makes your module more
robust. Every year, Odoo releases a new version of its software, and automated test cases
are very helpful in detecting regression in your application, which may have been caused
by a version upgrade. Luckily, any Odoo framework comes with different automated
testing utilities. Odoo includes the following three main types of tests:

• Python test case: Used to test Python business logic

• JavaScript QUnit test: Used to test JavaScript implementation in Odoo

• Tours: Integration test to check that Python and JavaScript work with each other
properly

In this chapter, we will cover the following recipes:

• Adding Python test cases

• Running tagged Python test cases

• Setting up Headless Chrome for client-side test cases

• Adding client-side QUnit test cases

568 Automated Test Cases

• Adding tour test cases

• Running client-side test cases from the UI

• Debugging client-side test cases

• Generating videos/screenshots for failed test cases

• Populating random data for testing

Technical requirements
In this chapter, we will look at all of the test cases in detail. In order to cover all of the
test cases in a single module, we have created a small module. Its Python definition is
as follows:

class LibraryBook(models.Model):
 _name = 'library.book'
 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')
 author_ids = fields.Many2many('res.partner',
string='Authors')
 state = fields.Selection(
 [('draft', 'Not Available'),
 ('available', 'Available'),
 ('lost', 'Lost')],
 'State', default="draft")
 color = fields.Integer()

 def make_available(self):
 self.write({'state': 'available'})

 def make_lost(self):
 self.write({'state': 'lost'})

The Python code given here will help us to write test cases for Python business cases. For
JavaScript test cases, we have added the int_color widget from the Creating custom
widgets recipe in Chapter 15, Web Client Development.

You can grab this initial module from the GitHub repository of this book at the following
link: https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter18/00_initial_
module.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter18/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter18/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter18/00_initial_module

Adding Python test cases 569

Adding Python test cases
Python test cases are used to check the correctness of business logic. In Chapter 5,
Basic Server-Side Development, you saw how you can modify the business logic of our
existing app. This makes it even more important, as customization might break the app's
functionality. In this chapter, we will write a test case to validate the business logic to
change a book's state.

Getting ready
We will be using the my_library module from the Chapter17/r0_initial_
module directory of the GitHub repository.

How to do it...
Follow these steps to add Python test cases to the my_library module:

1. Add a new file, tests/__init__.py, as follows:

from . import test_book_state

2. Add a tests/test_book_state.py file, and add the test case, as follows:

from odoo.tests.common import TransactionCase

class TestBookState(TransactionCase):

 def setUp(self, *args, **kwargs):
 super(TestBookState, self).setUp(*args, **kwargs)
 self.test_book = self.env['library.book'].
create({'name': 'Book 1'})

 def test_button_available(self):
 """Make available button"""
 self.test_book.make_available()
 self.assertEqual(self.test_book.state,
'available',
 'Book state should be changed to
available')

 def test_button_lost(self):
 """Make lost button"""
 self.test_book.make_lost()
 self.assertEqual(self.test_book.state, 'lost',
 'Book state should be changed to lost')

570 Automated Test Cases

3. In order to run the test cases, start the Odoo server with the following option:

./odoo-bin -c server.conf -i my_library --test-enable

Now, check the server log. You will find the following logs if our test cases ran
successfully:

... INFO test odoo.addons.my_library.tests.test_ book_state:
Starting TestBookState.test_button_available ...
... INFO test odoo.addons.my_library.tests.test_book_state:
Starting TestBookState.test_button_lost ...
... INFO test odoo.modules.loading: Module my_library loaded in
0.79s (incl. 0.12s test), 179 queries (+10 test)

You will see the ERROR log instead of INFO if a test case fails or there is an error.

How it works...
In Odoo, Python test cases are added to the tests/ directory of the module. Odoo will
automatically identify this directory and run the test under the folder.

Note
You also need to list your test case files in tests/__init__.py. If you
don't do that, that test case will not execute.

Odoo uses Python's unittest for Python test cases. To learn more about
Python's unittest, refer to https://docs.python.org/3.5/library/
unittest.html. Odoo provides some helper classes, wrapped over unittest.
These classes simplify the process of developing test cases. In our case, we have used
TransactionCase. Now, TransactionCase runs each test case method in
a different transaction. Once a test case method runs successfully, a transaction is
automatically rolled back. This means the next test case will not have any modification
made by the previous test case.

The class method starts from test_ and is considered a test case. In our example, we
have added two test cases. This checks the methods that change the book's state. The
self.assertEqual method is used to check whether the test case runs successfully.
We have checked the book state after performing operations on the book's record. So, if
the developer made a mistake and the method is not changing states as expected, the test
case will fail.

https://docs.python.org/3.5/library/unittest.html
https://docs.python.org/3.5/library/unittest.html

Running tagged Python test cases 571

Important information
Note that the setUp() method will automatically call for every test case we
run, so in this recipe, we have added two test cases, so that setUp() will call
twice. As per the code in this recipe, there will only be one record of the book
present during testing, because with TransactionCase, the transaction is
rolled back with every test case.

docstrings on the methods will be printed in the logger. This will be very helpful for
checking the status of the particular test case.

There's more...
The test suite provides the following additional test utility classes:

• SingleTransactionCase: Test cases generated through this class will run all
cases in a single transaction, so changes made from one test case will be available
in a second test case. In this way, the transaction is begun with the first test method
and is only rolled back at the end of the last test case.

• SavepointCase: This is the same as SingleTransactionCase, but in this
case, test methods run inside a rolled-back save point, instead of having all test
methods in a single transaction. This is used to create large test cases to make them
faster by generating test data only once. Here, we use the setUpClass() method
to generate the initial test data.

Running tagged Python test cases
When you run the Odoo server with the --test-enabled module, the test cases
run immediately after the module is installed. If you want to run a test case after the
installation of all the modules, or if you just want to run a test case for only one module,
a tagged() decorator is the answer. In this recipe, we will illustrate how to use this
decorator to mold test cases.

Getting ready
For this recipe, we will be using the my_library module from the last recipe. We will
modify the sequence of the test case.

572 Automated Test Cases

How to do it...
Follow these steps to add tags to the Python test cases:

1. Add a tagged() decorator (such as the following) to the test class to run it after
the installation of all modules:

from odoo.tests.common import TransactionCase, tagged

@tagged('-at_install', 'post_install')
class TestBookState(TransactionCase):
...

2. After that, run the test case as follows, just like before:

./odoo-bin -c server.conf -i my_library --test-enable

3. Now check the server log. This time, you will see our test case log after the following
logs, meaning that our test cases were run after all of the modules were installed,
as follows:

... INFO book odoo.modules.loading: 9 modules loaded in
1.87s, 177 queries (+0 extra)

... INFO book odoo.modules.loading: Modules loaded.

... INFO book odoo.service.server: Starting post tests

... INFO book odoo.addons.my_library.tests.test_book_
state: Starting TestBookState.test_button_available ...

... INFO book odoo.addons.my_library.tests.test_book_
state: Starting TestBookState.test_button_lost ...

... INFO book odoo.service.server: 2 post-tests in 0.14s,
10 queries

In these logs, the first line shows that nine modules were loaded. The second line shows
that all requested modules and their dependencies were installed successfully, and the
third line shows that it will start running the test cases that are tagged as post_install.

How it works...
By default, all of the test cases are tagged with standard, at_install, and the
current module's technical name (in our case, the technical name is my_library).
Consequently, if you are not using a tagged() decorator, your test case will have these
three tags.

Running tagged Python test cases 573

In our case, we want to run the test case after installing all of the modules. To do so, we
have added a tagged() decorator to the TestBookState class. By default, the test case
has the at_install tag. Because of this tag, your test case will run immediately after
the module is installed; it will not wait for other modules to be installed. We don't want
this, so to remove the at_install tag, we have added -at_install to the tagged
function. The tags that are prefixed by - will remove that tag.

By adding -at_install to the tagged() function, we stopped the test case execution
after the module installation. As we haven't specified any other tag in this, the test case
won't run.

So, we have added a post_install tag. This tag specifies that the test case needs to be
run after the installation of all modules is completed.

As you have seen, all test cases are tagged with the standard tag, by default. Odoo
will run all of the test cases tagged with the standard tag, in case you don't want to
run the specific test case all of the time and you only want to run the test case when it is
requested. To do so, you need to remove the standard tag by adding -standard to the
tagged() decorator, and you need to add a custom tag like this:

@tagged('-standard', 'my_custom_tag')
class TestClass(TransactionCase):
...

All of the non-standard test cases will not run with the --test-enable option. To run
the preceding test case, you need to use the --test-tags option, as follows (note that
here, we do not need to pass the --test-enable option explicitly):

./odoo-bin -c server.conf -i my_library --test-tags=my_custom_
tag

There's more...
During the development of the test case, it is important to run the test case for just one
module. By default, the technical name of the module is added as a tag, so you can use the
module's technical name with the --test-tags option. For example, if you want to run
test cases for the my_library module, then you can run the server like this:

./odoo-bin -c server.conf -i my_library --test-tags=my_library

The command given here will run the test case in the my_library module, but it will
still decide the sequence based on the at_install and post_install options.

574 Automated Test Cases

Setting up Headless Chrome for client-side
test cases
Odoo uses Headless Chrome to perform JavaScript test cases and tour test cases. Headless
Chrome is a way to run Chrome without the full UI. This way, we can run JavaScript test
cases in the same environment as the end user. In this recipe, we will install Headless
Chrome and other packages in order to run JavaScript test cases.

How to do it...
You will need to install Chrome to enable a JavaScript test case. For the development of
the modules, we mostly use the desktop OS. Consequently, if you have a Chrome browser
installed on your system, then there is no need to install it separately. You can run client-
side test cases with desktop Chrome. Make sure that you have a Chrome version higher
than Chrome 59. Odoo also supports the Chromium browser.

Note
Headless Chrome client-side test cases work fine with macOS and Linux, but
Odoo does not support Headless Chrome test cases on Windows.

Things change slightly when you want to run test cases in the production server or on
Server OS. Server OS does not have a GUI, so you need to install Chrome differently.
If you are using a Debian-based OS, you can install Chromium with the following
command:

apt-get install chromium-browser

Important information
Ubuntu 18.04 Server Edition has not enabled the universe repository by
default. So, it's possible that installing chromium-browser will show
an installation candidate error. To fix this error, enable the universe
repository with the following command: sudo add-apt-repository
universe.

Odoo also uses WebSockets for JavaScript test cases. For that, Odoo uses the
websocket-client Python library. To install it, use the following command:

pip3 install websocket-client

Now your system is ready to run client-side test cases.

Adding client-side QUnit test cases 575

How it works...
Odoo uses Headless Chrome for JavaScript test cases. The reason behind this is that it
runs test cases in the background, so it can be run on Server OS, too. Headless Chrome
prefers to run the Chrome browser in the background, without opening a GUI browser.
Odoo opens a Chrome tab in the background and starts running the test cases in it.
It also uses jQuery's QUnit for JavaScript test cases. In the next few recipes, we will create
a QUnit test case for our custom JavaScript widgets.

For test cases, Odoo opens Headless Chrome in a separate process, so to find out the
status of a test case running in that process, the Odoo server uses WebSockets. The
websocket-client Python library is used to manage WebSockets to communicate
with Chrome from the Odoo server.

Adding client-side QUnit test cases
Building new fields or views is very simple in Odoo. In just a few lines of XML, you can
define a new view. However, under the hood, it uses a lot of JavaScript. Modifying/adding
new features on the client side is complex, and it might break a few things. Most client-
side issues go unnoticed, as most errors are only displayed in the console. So, QUnit test
cases are used in Odoo to check the correctness of different JavaScript components.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe. We will add a QUnit test case for the int_color widget.

How to do it...
Follow these steps to add JavaScript test cases to the int_color widget:

1. Add /static/tests/colorpicker_tests.js with the following code:

odoo.define('colorpicker_tests', function (require) {
"use strict";

var FormView = require('web.FormView');
var testUtils = require('web.test_utils');

QUnit.module('Color Picker Tests', {
 beforeEach: function () {
 this.data = {
 book: {

576 Automated Test Cases

 fields: {
 name: { string: "Name", type: "char"
},
 color: { string: "color", type:
"integer"},
 },
 records: [{id: 1, name: "Book 1", color:
1},

 {id: 2, name: "Book 2",color:
3}]
 } };
 }
 }, function () {

 // Place step 2 here

 });

});

2. Add a QUnit test case for the color picker field like this:

QUnit.only('int_color field test cases', async function
(assert) {

 assert.expect(2);

 var form = await testUtils.createView({

 View: FormView,

 model: 'book',

 data: this.data,

 arch: '<form string="Books">' +

 '<group>' +

 '<field name="name"/>' +

 '<field name="color" widget="int_
color"/>' +

 '</group>' +

 '</form>',

 res_id: 1,

 });

 await testUtils.form.clickEdit(form);

 assert.strictEqual(form.$('.o_int_colorpicker .o_
color_pill').length, 10,

Adding client-side QUnit test cases 577

 "colorpicker should have 10 pills");

 await testUtils.dom.click(form.$('.o_int_colorpicker
.o_color_pill:eq(5)'));

 assert.strictEqual(form.$('.o_int_colorpicker .o_
color_5').hasClass('active'), true,

 "click on pill should make pill active");

 form.destroy();

});

3. Add the following code in /views/template.xml to register it in the test suite:

...
<template id="qunit_suite" name="colorpicker test"
 inherit_id="web.qunit_suite">
 <xpath expr="." position="inside">
 <script type="text/javascript"
 src="/my_library/static/tests/
colorpicker_tests.js" />
 </xpath>
</template>
...

To run this test case, start your server with the following command in the terminal:

./odoo-bin -c server.conf -i my_library,web --test-enable

To check that the tests have run successfully, search for the following log:

... INFO test odoo.addons.web.tests.test_js.WebSuite: console
log: "Color Picker Tests" passed 2 tests.

How it works...
In Odoo, JavaScript test cases are added to the /static/tests/ directory. In step 1,
we have added a colorpicker_tests.js file for the test case. In that file, we have
imported the formView and test_utils references. web.FormView is imported
because we have created the int_color widget for the form view, so to test the widget,
we will need the form view.

web.test_utils will provide us with the test utilities we require to build the JavaScript
test cases. If you don't know how JavaScript import works, refer to the Extending CSS and
JavaScript for the website recipe in Chapter 14, CMS Website Development.

578 Automated Test Cases

Odoo client-side test cases are built with the QUnit framework, which is the jQuery
framework for the JavaScript unit test case. Refer to https://qunitjs.com/ to
learn more about this. The beforeEach function is called before running the test cases,
and this helps to initialize the test data. The reference of the beforeEach function is
provided by the QUnit framework itself.

We have initialized some data in the beforeEach function. Let's see how that data
is being used in the test case. The client-side test case runs in an isolated (mock)
environment, and it doesn't make a connection to the database, so for these test cases,
we need to create test data. Internally, Odoo creates the mock server to mimic the
Remote Procedure Call (RPC) calls and uses the this.data property as the database.
Consequently, in beforeEach, we have initialized our test data in the this.data
property. The keys in the this.data property are considered a table, and the values
contain information about the fields and the table rows. The fields key is used to define
table fields, and the records key is used for the table rows. In our example, we have
added a book table with two fields: name(char) and color(integer). Note that
here, you can use any Odoo fields, even relational fields; for example, {string: "M2o
Field", type: "many2one", relation: 'partner'}. We have also added
two book records with the records key.

Next, we have added the test cases with the QUnit.test function. The first argument
in the function is string to describe the test case. The second argument is the function
to which you need to add code for the test cases. This function is called from the QUnit
framework, and it passes the assert utilities as the argument. In our example, we have
passed the number of expected test cases in the assert.expect function. We are
adding two test cases, so we have passed 2.

We want to add to the test case int_color widget in the editable form view, so we have
created the editable form view with testUtils.createView. The createView
function accepts different arguments, as follows:

• View is the reference of the view you want to create. You can create any type of view
for the test case; you just need to pass the view reference here.

• model is the name of the model for which the given view is created. All of the
models are listed in the this.data property. We want to create a view for the
book model, so in our example, we have used book as a model.

• data is the record that we are going to use in the view.

https://qunitjs.com/

Adding tour test cases 579

• arch is the definition of the view you want to create. Because we want to test the
int_color widget, we have passed the view definition with the widget. Note that
you can only use the fields that are defined in the model.

• res_id is the record ID whose record is being displayed. This option is only used
for form views. In our case, the form view will be displayed with the data of the
book 1 record, as we added 1 as res_id.

After creating the form view with the int_color widget, we added two test cases.
The first one is used to check the number of color pills on the UI, and the second
test case is used to check that the pill is activated correctly after the click. We have
the strictEqual function from the asserted utility of the QUnit framework. The
strictEqual function passes the test case if the first two arguments match. If they do
not match, it will fail the test case.

There's more...
There are a few more assert functions available for QUnit test cases, such as assert.
deepEqual, assert.ok, and assert.notOk. To learn more about QUnit, refer to its
documentation at https://qunitjs.com/.

Adding tour test cases
You have now seen Python and JavaScript test cases. Both of these work in an isolated
environment, and they don't interact with each other. To test integration between
JavaScript and Python code, tour test cases are used.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe. We will add a tour test case to check the flow of the book model. Also, make
sure you have installed the web_tour module or have added the web_tour module
dependency to the manifest.

https://qunitjs.com/

580 Automated Test Cases

How to do it...
Follow these steps to add a tour test case for books:

1. Add a /static/src/js/my_library_tour.js file, and then add a tour
as follows:

odoo.define('my_library.tour', function (require) {

"use strict";

var core = require('web.core');

var tour = require('web_tour.tour');

var _t = core._t;

tour.register('library_tour', {

 url: "/web",

 test: true,

 rainbowManMessage: _t("Congrats, you have listed a
book."),

 sequence: 5,

 }, [tour.stepUtils.showAppsMenuItem(),

 // Place step 3 here

]);

});

2. Add steps for the test tour:

{

 trigger: '.o_app[data-menu-xmlid="my_library.library_
base_menu"]',

 content: _t('Manage books and authors in Library
app.'),

 position: 'right'

}, {

 trigger: '.o_list_button_add',

 content: _t("Let's create new book."),

 position: 'bottom',

}, {

 trigger: 'input[name="name"]',

Adding tour test cases 581

 extra_trigger: '.o_form_editable',

 content: _t('Set the book title'),

 position: 'right',

 run: function (actions) {

 actions.text('Test Book');

 },

}, {

 trigger: '.o_form_button_save',

 content: _t('Save this book record'),

 position: 'bottom',

}

3. Add the my_library_tour.js file in the test assets:

<template id="assets_tests" name="Library Assets Tests"
inherit_id="web.assets_tests">

 <xpath expr="." position="inside">

 <script type="text/javascript" src="/my_library/
static/tests/my_library_tour.js" />

 </xpath>

</template>

4. Add a /tests/test_tour.py file, and run the tour through HttpCase,
as follows:

from odoo.tests.common import HttpCase, tagged

class TestBookUI(HttpCase):

 @tagged('post_install', '-at_install')
 def test_01_book_tour(self):
 """Books UI tour test case"""
 self.browser_js("/web",
 "odoo.__DEBUG__.services['web_tour.tour'].
run('library_tour')",
 "odoo.__DEBUG__.services['web_tour.tour'].
tours.library_tour.ready",
 login="admin")

In order to run test cases, start the Odoo server with the following option:

./odoo-bin -c server.conf -i my_library --test-enable

582 Automated Test Cases

Now check the server log. Here, you will find the following logs if our test cases ran
successfully:

...INFO test odoo.addons.my_library.tests.test_tour.TestBookUI:
console log: Tour library_tour succeeded

How it works...
In order to create tour test cases, you need to create the UI tour first. If you want to learn
more about UI tours, refer to the Improve onboarding with tours recipe in Chapter 15, Web
Client Development.

In step 1, we registered a new tour with the name library_tour. This tour is exactly
like the tour we created in the Improve onboarding with tours recipe in Chapter 15, Web
Client Development. In step 2, we added the steps for the tours.

Here we have two main changes compared to the onboarding tour. First, we have added
a test=true parameter for the tour definition; second, we have added one extra
property, run. In the run function, you have to write the logic to perform the operation
that is normally done by the user. For example, in the fourth step of the tour, we ask the
user to enter the book title.

To automate this step, we have added a run function to set the value in the title field.
The run function passes the action utility as the parameter. This provides some shortcuts
to perform basic actions. The most important ones are as follows:

• actions.click(element) is used to click on a given element.

• actions.dblclick(element) is used to double-click on a given element.

• actions.tripleclick(element) is used to triple-click on a given element.

• actions.text(string) is used to set the input values.

• actions.drag_and_drop(to, element) is used to drag and drop an
element.

• actions.keydown(keyCodes, element) is used to trigger particular
keyboard events on an element.

• actions.auto() is the default action. When you don't pass the run function in
the tour step, actions.auto() is performed. This usually clicks on the trigger
element of the tour step. The only exception here is an input element. If the trigger
element is input, the tour will set the default value Test in the input. That is why
we don't need to add run functions to all of the steps.

Running client-side test cases from the UI 583

Alternatively, you can perform whole actions manually if default actions are not enough.
In the next tour step, we want to set a value for the color picker. Note that we have used
the manual action because default values won't help here. Consequently, we have added
the run method with the basic jQuery code to click on the third pill of the color picker.
Here, you will find the trigger element with the this.$anchor property.

By default, registered tours are displayed to the end user to improve the onboarding
experience. In order to run them as a test case, you need to run them in Headless Chrome.
To do so, you need to use the HttpCase Python test case. This provides the browser_
js method, which opens the URL and executes the command passed as the second
parameter. You can run the tour manually, like this:

odoo.__DEBUG__.services['web_tour.tour'].run('library_tour')

In our example, we have passed the name of the tour as the argument in the browser_
js method. The next parameter is used to wait for a given object to be ready before
performing the first command. The last parameter in the browser_js() method is the
name of the user. This username will be used to create a new test environment, and all of
the test actions will be performed on behalf of this user.

Running client-side test cases from the UI
Odoo provides a way to run client-side test cases from the UI. By running the test case
from the UI, you will be able to see each step of the test case in action. This way, you can
verify that the UI test case is working exactly as we wanted.

How to do it...
You can run both the QUnit test case and the tours test case from the UI. It is not possible
to run Python test cases from the UI as it runs on the server side. In order to see the
options to run test cases from the UI, you need to enable developer mode.

584 Automated Test Cases

Running QUnit test cases from the UI
Click on the bug icon to open the drop-down menu, as shown in the following figure.
Click on the Run JS Tests option:

Figure 18.1 – Option to run test cases

This will open the QUnit suite and it will start running the test cases one by one, as shown
in the following screenshot. By default, it will only show failed test cases. To show all the
passed test cases, uncheck the Hide passed tests checkbox, as shown in the following
screenshot:

Figure 18.2 – Results of QUnit test cases

Running client-side test cases from the UI 585

Running tours from the UI
Click on the bug icon to open the drop-down menu, as shown in the following screenshot,
and then click on Start Tour:

Figure 18.3 – Option to run tour test cases

This will open the dialog with a list of registered tours, as you can see in the following
screenshot. Click on the play button on the side to run the tour:

Figure 18.4 – List of tour test cases

The test tours only display in a list if you have enabled test assets mode. If you don't find
the library_tour tour in the list, make sure you have activated test assets mode.

586 Automated Test Cases

How it works...
The UI for QUnit is provided by the QUnit framework itself. Here, you can filter the test
cases for the modules. You can even run a test case for just one module. With the UI, you
can see the progress of each test case, and you can drill down to each step of the test case.
Internally, Odoo just opens the same URL in Headless Chrome.

Clicking on the Run tours option will display the list of available tours. By clicking on
the play button on the list, you can run the tour. Note that when the tour runs via the
command-line options, it runs in the rolled-back transaction, so changes made through
the tour are rolled back after the tour is successful. However, when the tour runs from the
UI, it works just as though a user was operating it, meaning changes made from the tour
are not rolled back and stay there, so use this option carefully.

Debugging client-side test cases
Developing complex client-side test cases can be a headache. In this recipe, you will learn
how you can debug the client-side test cases in Odoo. Instead of running all of the test
cases, we will just run the one. Additionally, we will display the UI of the test case.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe.

How to do it...
Follow these steps to run a test case in debug mode:

1. Open the /static/tests/colorpicker_tests.js file and update the
QUnit.test test with QUnit.only, like this:

...
QUnit.only('int_color field test cases', function
(assert) {
...

2. Add the debug parameter in the createView function, as follows:

var form = testUtils.createView({
 View: FormView,
 model: 'book',
 data: this.data,
 arch: '<form string="Books">' +

Debugging client-side test cases 587

 '<group>' +
 '<field name="name"/>' +
 '<field name="color" widget="int_color"/>' +
 '</group>' +
 '</form>',
 res_id: 1,
 debug:true
});

Open the developer mode and open the drop-down menu by clicking on the bug icon on
the top menu, and then click on Run JS Tests. This will open the QUnit suite:

Figure 18.5 – Option to run test cases

This will run only one test case, which is our color picker test case.

How it works...
In step 1, we have replaced QUnit.test with QUnit.only. This will run this test case
only. During the development of the test case, this can be time saving. Note that using
QUnit.only will stop the test case from running via the command-line options. This
can only be used for debugging or testing, and it can only work when you open the test
case from the UI, so don't forget to replace it with QUnit.test after the development.

In our example of the QUnit test case, we have created the form view to test the int_
color widget. If you run the QUnit test cases from the UI, you will learn that you are
not able to see the created form views in the UI. From the UI of the QUnit suite, you are
only able to see the logs. This makes developing a QUnit test case very difficult. To solve
this issue, the debug parameter is used in the createView function. In step 2, we have
added debug: true in the createView function. This will display the test form view
in the browser. Here, you will be able to locate Document Object Model (DOM) elements
via the browser debugger.

588 Automated Test Cases

Warning
At the end of the test case, we destroy the view through the destroy()
method. If you have destroyed the view, then you won't be able to see the form
view in the UI, so in order to see it in the browser, remove that line during
development. This will help you debug the test case.

Running QUnit test cases in debug mode helps you develop test cases very easily
and quickly.

Generating videos/screenshots for failed test
cases
Odoo uses Headless Chrome. This opens new possibilities. Starting from Odoo 12, you
can record videos of the failed test cases, or you can take screenshots of the failed test
cases as well.

How to do it...
Recording a video for the test case requires an ffmpeg package.

1. To install this, you need to execute the following command in the terminal (note
that this command only works on a Debian-based OS):

apt-get install ffmpeg

2. To generate a video or screenshot, you will need to provide a directory location to
store the video or screenshots.

3. If you want to generate screencast (video) of a test case, use the --screencasts
command like this:

./odoo-bin -c server.conf -i my_library --test-enable
--screencasts=/home/pga/odoo_test/

4. If you want to generate screenshots of a test case, use the --screenshosts
command like this:

./odoo-bin -c server.conf -i my_library --test-enable
--screenshots=/home/pga/odoo_test/

Populating random data for testing 589

How it works...
In order to generate screenshots/screencasts for failed test cases, you need to run the
server with the path to save the video or image files. When you run the test cases, and
if a test case fails, Odoo will save a screenshot/video of the failed test case in the given
directory.

To generate a video of a test case, Odoo uses the ffmpeg package. If you haven't installed
this package on the server, then it will only save a screenshot of a failed test case. After
installing the package, you will be able to see the mp4 file of any failed test case.

Note
Generating videos for test cases can consume more space on disks, so use this
option with caution and only when it is really necessary.

Keep in mind that screenshots and videos are only generated for failed test cases, so if you
want to test them, you need to write a test case that fails.

Populating random data for testing
So far, we have seen test cases that have been used to detect errors or bugs in business
logic. However, at times we need to test our development with large amounts of data.
Generating large amounts of data can be a tedious job. Odoo provides a set of tools that
helps you to generate a lot of random data for your model. In this recipe, we will use the
populate command to generate test data for the library.book model.

Getting ready
For this recipe, we will continue using the my_library module from the previous
recipe. We will add the _populate_factories method, which will be used to generate
test data.

590 Automated Test Cases

How to do it...
Follow these steps to generate data for the library.book model:

1. Add a populate folder in the my_library module. Also, add an __init__.py
file with this content:

from . import library_data

2. Add a my_library/populate/library_data.py file and add this code to
generate the book's data:

from odoo import models

from odoo.tools import populate

class BookData(models.Model):

 _inherit = 'library.book'

 _populate_sizes = {'small': 10, 'medium': 100,
'large': 500}

 def _populate_factories(self):

 return [

 ('name', populate.constant('Book no
{counter}')),

]

3. Run this command to generate the book's data:

./odoo-bin populate -–models=library.book –-size=medium
-c server.conf -i my_library

This will generate 100 units of data for the books. After generating the data, the process
will be terminated. To see the book's data, run the command without the populate
parameters.

How it works...
In step 1, we added the populate folder in the my_library module. This folder contains
the code to populate the test data.

Populating random data for testing 591

In step 2, we added code to populate the book data. To generate random data, the _
populate_factories method was used. The _populate_factories method
returns factories for model fields, which will be used to generate random data. The
library.book model has the required name field, so in our example, we have returned
the generator for the name field. This generator will be used to generate random data for
the books record. We have used the populate.constant generator for the name
field; this will generate different names when we iterate during data generation.

Just like populate.constant, Odoo provides several other generators to populate
data; here is a list of those generators:

• populate.randomize(list) will return a random element from the given list.

• populate.cartesian(list) is just like randomize(), but it will try to
include all the values from the list.

• populate.iterate(list) will iterate over a given list and once all the
elements are iterated, it will return based on randomize or random elements.

• populate.constant(str) is used to generate formatted strings. You can also
pass the formatter parameter to format values. By default, the formatter is
a string-format function.

• populate.compute(function) is used when you want to compute a value
based on your function.

• populate.randint(a, b) is used to generate a random number between the
a and b parameters.

These generators can be used to generate test data of your choice.

Another important attribute is _populate_sizes. It is used to define the number of
records you want to generate based on the --size parameter. Its value always depends
on the business object.

In step 3, we have generated a data books model. To populate test data, you will need
to use the --size and --model parameters. Internally, Odoo uses the _populate
method to generate random records. The _populate method itself uses the _
populate_factories method to get random data for records. The _populate
method will generate data for the models given in the --model parameter and the
amount of test data will be based on the _populate_sizes attribute of the model.
Based on our example, if we use –-size=medium, the data for 100 books will be
generated.

592 Automated Test Cases

Note
If you run the populate command multiple times, the data will be generated
multiple times as well. It's important to use this carefully: if you run the
command in a production database, it will generate test data in the production
database itself. This is something you want to avoid.

There's more…
At times, you would like to generate relational data too. For example, with books, you
might also want to create author or rent records. To manage such records, you can use the
_populate_dependencies attribute:

class BookData(models.Model):

 _inherit = 'library.book'

 _populate_sizes = {'small': 10, 'medium': 100, 'large':
500}
 _populate_dependencies = ['res.users', 'res.company']
 . . .

This will populate the data for dependencies before populating the current model. Once
that is done, you can access the populated data via the populated_models registry:

company_ids = self.env.registry.populated_models['res.company']

The line given here will give you the list of companies that is populated before generating
test data for the current model.

19
Managing,

Deploying, and
Testing with

Odoo.sh
In 2017, Odoo released Odoo.sh, a new cloud service. Odoo.sh is a platform that makes
the process of testing, deploying, and monitoring Odoo instances as easy as possible.
In this chapter, we will look at how Odoo.sh works, when you should use it over other
deployment options, and its features.

In this chapter, we will cover the following recipes:

• Exploring some basic concepts of Odoo.sh

• Creating an Odoo.sh account

• Adding and installing custom modules

• Managing branches

• Accessing debugging options

594 Managing, Deploying, and Testing with Odoo.sh

• Getting a backup of your instance

• Checking the status of your builds

• All Odoo.sh options

Note
This chapter is written under the assumption that you have Odoo.sh access.
It is a paid service, and you will need a subscription code to access the
platform. If you are an Odoo partner, you will get a free Odoo.sh subscription
code. Otherwise, you will need to purchase it from https://www.odoo.
sh/pricing. You can still go through this chapter even if you don't have
a subscription code. It contains enough screenshots to help you understand the
platform.

Technical requirements
All the code used in this chapter can be downloaded from the GitHub repository,
at https://github.com/PacktPublishing/Odoo-14-Development-
Cookbook-Fourth-Edition/tree/master/Chapter20/00_initial_
module.

Exploring some basic concepts of Odoo.sh
In this recipe, we will look at some of the features of the Odoo.sh platform. We will answer
some basic questions, such as when you should use it, and why should it be used.

What is Odoo.sh?
Odoo.sh is a cloud service that provides the platform with the ability to host Odoo
instances with custom modules. Putting it simply, it is Odoo's Platform as a Service
(PaaS) cloud solution. It is fully integrated with GitHub. Any GitHub repository with
valid Odoo modules can be launched on Odoo.sh within minutes. You can examine the
ongoing development by testing multiple branches in parallel. Once you have moved your
instance to production, you can test some new features with a copy of the production
database; this helps to avoid regression. It also takes daily backups. With Odoo.sh, you can
deploy Odoo instances efficiently, even if you don't have sound knowledge of DevOps. It
automatically sets up an Odoo instance with top-notch configurations. Note that Odoo.sh
is the Enterprise edition of Odoo. You cannot use the Odoo Community edition because
Odoo.sh will only load the Enterprise edition.

https://www.odoo.sh/pricing
https://www.odoo.sh/pricing
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter20/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter20/00_initial_module
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter20/00_initial_module

Exploring some basic concepts of Odoo.sh 595

Why was Odoo.sh introduced?
Before Odoo.sh was introduced, there were two ways to host Odoo instances. The first was
to use Odoo Online, which is a Software as a Service (SaaS) cloud service. The second
method was the on-premises option, in which you needed to host an Odoo instance and
configure it on your server yourself. Now, both of these options have pros and cons. In the
Odoo online option, you don't need to carry out any configuration or deployment, as it is
a SaaS service. However, you cannot use custom modules on this platform. On the other
hand, with the on-premises option, you can use custom modules, but you need to do
everything yourself. You need to purchase the server, you need to configure the database
and NGINX, and you need to set up the mail server, daily backups, and security.

For this reason, there was a need for a new option that provided the simplicity of Odoo
online and the flexibility of the on-premises option. Odoo.sh lets you use custom modules
without complex configuration. It also provides additional features, such as testing
branches, staging branches, and automated tests.

Note
It is not completely true that customization is not possible on Odoo online.
With Odoo Studio and other techniques, you can carry out customization.
The scope of this customization, however, is very narrow.

When should you use Odoo.sh?
If you don't need customization or you only need a small amount of customization that
is possible in Odoo online, you should go for Odoo online. This will save both time and
money. If you want a significant amount of customization and you have teamed up with
expert DevOps engineers, you can choose the on-premises option. Odoo.sh is suitable for
when you have good knowledge of Odoo customization but you do not have any expertise
in DevOps. With Odoo.sh, there's no need to carry out complex configurations; you can
start using it straight away, along with your customization. It even configures the mailing
server.

Odoo.sh is very useful when you are developing a large project with agile methodology.
This is because on Odoo.sh, you can test multiple development branches in parallel and
deploy the stable development in production in minutes. You can even share the test
development with the end customer.

596 Managing, Deploying, and Testing with Odoo.sh

What are the features of Odoo.sh?
Odoo has invested a lot of time in the development of the Odoo.sh platform, and it is
packed with features as a result. Let's have a look at the features of Odoo.sh. Note that
Odoo adds new features from time to time. In this section, I have mentioned the features
that are available at the time of writing this book, but you might find some further features
as well:

• GitHub integration: This platform is fully integrated with GitHub. You can test
every branch, pull, or commit here. For every new commit, a new branch will be
pulled automatically. It will also run an automated test for the new commits. You
can even create/merge branches from the Odoo.sh UI itself.

• Web shell: Odoo.sh provides the web shell in the browser for the current build (or
production server). Here, you can see all the modules and logs.

• Web code editor: Just like the web shell, Odoo.sh provides the code editor in
the browser. Here, you can access all of the source code and also get the Odoo
interactive shell for the current build.

• SSH access: By registering your public keys, you can connect to any container
via SSH.

• External dependencies: You can install any Python packages. To do this, you just
need to add requirement.txt in the root of your GitHub repository. Right now,
you can only install Python packages. It is not possible to install system packages
(apt packages).

• Server logs: You can access the server log for each build from this browser. These
logs are in real time and you can also filter the logs from here.

• Automated tests: Odoo.sh provides your own runbot, which you can use to
perform a series of automated tests for your development. Whenever you add a new
commit or a new development branch, Odoo.sh will automatically run all of the test
cases and show the status of the tests. You can access the full test log, which will help
you find issues if a test case fails.

• Staging and development branches: Odoo.sh provides two types of branches: the
development branch and the staging branch. In the development branch, you can
test ongoing development with demonstration data. The staging branch is used
when the development is finished and you want to test the feature before merging it
into production. The staging branch does not load the demonstration data; instead,
it uses a copy of the production server.

Creating an Odoo.sh account 597

• Mail server: Odoo.sh automatically sets up a mail server for the production server.
Just like Odoo online, Odoo.sh does not need any extra configuration for email,
although it is possible to use your own mail server.

• Mail catcher: The staging branch uses a copy of your production database, so it
has information about your real customers. Testing on such a database can make
it possible to send emails to real customers. To avoid this issue, the email feature is
only activated on production branches. Staging and development branches do not
send real emails, but instead, they use a mail catcher so that you can test and see
emails in the staging and development branch.

• Share the build: With Odoo.sh, you can share the development branches with your
customer so they can test them before merging the feature into production.

• Faster deployment: As Odoo.sh is fully integrated with GitHub, you can merge and
deploy the development branches directly from the browser with a simple drag-and-
drop procedure.

• Backup and recovery: Odoo.sh keeps full backups for the production instance.
You can download or restore any of these backups in just a few clicks. Refer to
the Getting a backup of your instance recipe to learn more about backups. Odoo.sh
keeps 14 full backups for up to 3 months: 1 per day for 7 days, 1 per week for
4 weeks, 1 per month for 3 months.

• Community modules: You can test install any community module in a few simple
clicks. You can also test free modules directly from the app store.

Creating an Odoo.sh account
In this recipe, we will create an Odoo.sh account and an empty repository for the custom
add-ons.

Getting ready
For this recipe, you will need a GitHub account on which you can add custom modules.
You will also need an Odoo.sh subscription code. If you are an Odoo partner, you will
get a free Odoo.sh subscription code. Otherwise, you will need to purchase it from
https://www.odoo.sh/pricing.

https://www.odoo.sh/pricing

598 Managing, Deploying, and Testing with Odoo.sh

How to do it...
Follow these steps to create an Odoo.sh account:

1. Open https://www.odoo.sh and click on Sign in in the top menu. This will
redirect you to the GitHub page:

Figure 19.1 – GitHub authentication

2. Give authorization to your repositories, which will redirect you back to Odoo.sh.
Fill in the form to deploy the instance:

https://www.odoo.sh

Creating an Odoo.sh account 599

 Figure 19.2 – Create an Odoo.sh instance

3. This will deploy the instance and you will be redirected to the Odoo.sh control
panel. Wait for the build status to be successful; then, you can connect to your
instance with the CONNECT button displayed in the following screenshot:

 Figure 19.3 – Connect to the development instance

600 Managing, Deploying, and Testing with Odoo.sh

Upon clicking CONNECT, you will be automatically logged in to your instance. If you
are an admin, by clicking on the arrow button at the side, you can connect as other users
as well.

How it works...
The Odoo.sh platform is integrated with GitHub. You need to give full authorization
to Odoo.sh, so that it can have access to your repositories. Odoo.sh will also create the
webhooks. GitHub webhooks notify the Odoo.sh platform when a new commit or branch
has been added to your repository. When you sign in for the first time, Odoo.sh will
redirect you to GitHub. GitHub will show a page similar to the screenshot in step 1, in
which you will need to provide access to all of your private and public repositories. If you
are not the owner of the repository, you will see the button to make an access request to
the owner for the rights.

After you grant repository access to Odoo.sh, you will be redirected back to Odoo.sh,
where you will see the form to deploy the Odoo instance. To create a new instance, you
will need to add the following information:

• GitHub repository: Here, you will need to set the GitHub repository with your
custom modules. The modules in this repository will be available to the Odoo
instance. You will see a list of all your existing repositories. You can select one of
them or create a new one.

• Odoo version: Choose the Odoo version you want to deploy. You can select from
the currently supported Odoo LTS versions. Make sure you select the version that
is compatible with the modules in the GitHub repository. For our example, we will
select version 14.0.

• Subscription code: This is the code to activate the instance. You will receive the
code via email after purchasing an Odoo.sh plan; if you are an official Odoo partner,
you can ask for this code from Odoo.

• Hosting location: Here, you need to choose a server location based on your
geographic location. The server that is nearest will give the best performance. The
latency displayed under the hosting location is based on your location. So if you are
creating an instance for your customer and the customer is in another country, you
will need to select a server location that is near the customer's location with lower
latency.

Adding and installing custom modules 601

Once you submit this form, your Odoo instances will be deployed and you will be
redirected to the Odoo.sh control panel. Here, you will see your first build. It will take
a few minutes, and then you will be able to connect to your Odoo instance. If you check
the left panel, you will see that there are no branches in the production and staging
sections and that only one branch is in the development section. In the next few recipes,
we will see how you can create staging and production branches.

There's more...
Right now, Odoo.sh only works with GitHub. Other version-control systems, such as
GitLab and Bitbucket, are not supported right now. If you want to use a system other
than GitHub, you can use the intermediate GitHub repository that is linked to your
actual repository via the submodule. In the future, Odoo will add support for GitLab and
Bitbucket, but this is not the priority at the moment, according to the Odoo officials. The
method suggested here is just a workaround if you want to use GitLab or Bitbucket.

Adding and installing custom modules
As we described earlier, in the Exploring some basic concepts of Odoo.sh recipe, on the
Odoo.sh platform, you can add custom Odoo modules. The platform is integrated with
GitHub, so adding a new commit in the registered repository will create a new build in
the respective branch. In this recipe, we will add a custom module in our repository and
access that module in Odoo.sh.

Getting ready
For our example, we will choose the my_library module from Chapter 18, Automated
Test Cases. You can add any valid Odoo module in this recipe, but we will use the module
with test cases here, as the Odoo.sh platform will perform all the test cases automatically.
For simplicity, we have added this module in the GitHub repository of this book, at
Chapter20/r0_initial_module/my_library.

602 Managing, Deploying, and Testing with Odoo.sh

How to do it...
Follow these steps to add your custom modules to Odoo.sh:

1. Get your Git repository on your local machine, add the my_library module in
it, and then execute the following command to push the module in the GitHub
repository:

git add .
git commit -am"Added my_library module"
git push origin master

2. Open your project in Odoo.sh. Here, you will find a new build for this commit. It
will start running test cases and you will see the following screen:

 Figure 19.4 – New build for the library module

3. After a new commit is pulled in your Odoo.sh project, you will see the installation
progress on the right side. Wait for the installation to be complete, then access your
instance by clicking on the green CONNECT button. It will open the Odoo instance
with the my_library module:

Adding and installing custom modules 603

Figure 19.5 – Library module installed

Explore and test the my_library module. Note that this is not a production build, so
you can test it however you like.

How it works...
In step 1, we uploaded the my_library module on the GitHub repository. Odoo.sh will
be notified about these changes instantly, through a webhook. Then, Odoo.sh will start
building a new instance. It will install all your custom modules and their dependencies.
A new build will automatically perform the test cases for the installed modules.

Note
By default, Odoo.sh will only install your custom modules and their
dependencies. If you want to change this behavior, you can do it from the
module installation section of the global settings. We will look at these settings
in detail in the next few recipes.

In the HISTORY tab, you will be able to see the full history of the branch. Here, you
can find some basic information about the build. It will display the commit message, the
author information, and the GitHub link of the commit. On the right side, you will get
the live progress of the build. Note that the builds in the development section will install
the modules with demonstration data. In the next few recipes, you will see the difference
between the production, development, and staging branches, in detail.

After a successful build, you will see a button to connect the instance. By default, you will
be connected with the admin user. Using CONNECT as a drop-down menu, you can log
in as a demo and portal user, instead.

604 Managing, Deploying, and Testing with Odoo.sh

There's more...
Odoo.sh will create a new build for every new commit. You can change this behavior from
the SETTINGS tab of the branch:

 Figure 19.6 – Development branch options

Here, you will find several options. One of them is Behavior upon new commits. It has
three possible values:

• New Build: This option will create a new build for each commit.

• Do Nothing: This option will ignore the new commit and do nothing.

• Update Previous Build: This will use an existing build for the new commit.

The Module installation and Test suite options will help you control the test suites. You
can disable testing and you can run specific test cases with these options.

Managing branches
In Odoo.sh, you can create multiple development and staging branches along with the
production branch. In this recipe, we will create different types of branches and see the
differences between them. You will see the full workflow of how you can develop, test, and
deploy the new features.

Managing branches 605

Getting ready
Visit https://www.odoo.sh/project and open the project we created in the
Creating an Odoo.sh account recipe. We will create a development branch for the new
feature and then test it in the staging branch. Finally, we will merge the feature in the
production branch.

How to do it...
In this recipe, we will create all types of branches in Odoo.sh. At the moment, we don't
have any branches in production, so we will start by creating a production branch.

Creating the production branch
Right now, we only have one main branch in the Development section. The last build of
the main branch shows a green label that reads Test: success, meaning that all of the
automated test cases have run successfully. We can move this branch into the Production
branch, as the test case status shows that everything is fine. In order to move your main
branch into the Production branch, you just need to drag the main branch from the
Development section and drop it in the Production section, as shown in the following
screenshot:

Figure 19.7 – Move the main branch to Production

This will create your Production branch. You can access the Production branch with
the Connect button on the right side. Once you open the production instance, you will
notice that there are no applications installed in the production database. This is because
the production instance requires you or your end customer to install and configure the
operation according to the requirements. Note that this is a production instance, so in
order to keep the instance running, you need to enter your Enterprise subscription code.

https://www.odoo.sh/project

606 Managing, Deploying, and Testing with Odoo.sh

Creating a development branch
You can create development branches directly from the browser. Click on the plus (+)
button next to the Development section. This will show two types of input. One is the
branch to fork, and the other is the name of the development branch. After filling in the
input, hit the Enter key.

This will create a new branch by forking the given branch, as shown in the following
screenshot:

Figure 19.8 – Create a new development branch

Note
If you don't want to create a development branch from the UI, you can create it
directly from GitHub. If you add a new branch in the GitHub repository, Odoo.
sh will create a new development branch automatically.

Managing branches 607

Branches in development are usually new feature branches. As an example, we will add
a new field in the library.book model. Follow these steps to add a new HTML field in
the books model:

1. Increase the module version in the manifest file:

...
'version': '14.0.2',
...

2. Add a new field in the library.book model:

...
color = fields.Integer()
description = fields.Html()

def make_available(self):
...

3. Add a description field in the book's form view:

...
 </group>
 <notebook>
 <page string="Description">
 <field name="description"/>
 </page>
 </notebook>
</sheet>
...

4. Push the changes in the feature branch by executing the following command in the
terminal:

git commit -am"Added book description"
git push origin feature-branch

This will create a new build on Odoo.sh. After a successful build, you can test this new
feature by accessing the instance. You will be able to see a new HTML field in the book's
form view. Note that this branch is the development branch, so the new feature is only
available to this branch. Your production branch is not changed.

608 Managing, Deploying, and Testing with Odoo.sh

Creating a staging branch
Once you complete the development branch and the test cases are successful, you can
move the branch to the Staging section. This is the pre-production section. Here, the new
feature will be tested with a copy of the production database. This will help us to find any
issues that might be generated in the production database. To move from the development
branch to the Staging branch, just drag and drop the branch into the Staging section:

Figure 19.9 – Move the development branch to Staging

Once you move the Development branch to the Staging section, you can test your new
development with production data. Just like any other build, you can access the Staging
branch with the CONNECT button on the right. The only difference is that you will be
able to see the data of the production database, in this case. Here, your development
module is only upgraded automatically if you have increased the module version from the
manifest.

Note
The staging branch will use a copy of the production database, so the staging
instance will have real customers and their emails. For this reason, in the
staging branch, real emails are disabled so that you don't send any by accident
when testing a new feature in the staging branch.

If you haven't changed the module version, you will need to upgrade the modules
manually to see the new features in action.

Managing branches 609

Merging new features in the production branch
After you test the new development with the production database (in the staging branch),
you can deploy the new development into the Production branch. Like before, you just
need to drag and drop the Staging branch into the Production branch. This will merge
the new feature branch into the main branch. Like the Staging branch, your development
module is only upgraded automatically if you have increased the module version from
manifest. After this, the new module is available for the end customer:

Figure 19.10 – Merge changes to production

Once you drop the staging branch to Production, a popup will be displayed with two
options:

• Rebase and Merge: This will create a pull request and merge it with the rebase so
you will have liner history.

• Merge: This will create a merge commit, without fast-forwading..

How it works...
In the previous example, we performed a full workflow to deploy a new feature into
production. The following list explains the purposes of the different types of branches in
Odoo.sh:

• Production branch: This is the actual instance that is used by the end customer.
There is only one production branch, and the new features are intended to merge
with this branch. In this branch, the mailing service is active, so your end customer
can send and receive emails. Daily backup is also active for this branch.

610 Managing, Deploying, and Testing with Odoo.sh

• Development branches: This type of branch shows all the active development.
You can create unlimited development branches, and every new commit in the
branch will trigger a new build. The database in this branch is loaded with the
demonstration data. After the development is complete, this branch will be moved
to the staging branch. The mailing service is not active in these branches.

• Staging branches: This is the intermediate stage in the workflow. A stable
development will be moved to the staging branch to be tested with a copy of the
production branch. This is a very important step in the development life cycle; it
might happen that a feature that works fine in the development branch does not
work as expected with the production database. The staging branches give you an
opportunity to test the feature with the production database before deploying it
in production. If you find any issues with the development in this branch, you can
move the branch back to development. The number of the staging branches is based
on your Odoo.sh plan. By default, you only have one staging branch, but you can
purchase more if you want to.

This is the complete workflow of how new features should be merged into production. In
the next recipe, you will see some other options that we can use with these branches.

Accessing debugging options
Odoo.sh provides different features for analysis and debugging purposes. In this recipe, we
will explore all of these features and options.

How to do it...
We will be using the same Odoo.sh project for this recipe. Each option will be shown in
a different section, with a screenshot.

Accessing debugging options 611

Branch history
You have already seen this feature in previous recipes. The HISTORY tab shows the full
history of the branch. You can connect to the builds from here:

Figure 19.11 – The HISTORY tab

In the HISTORY tab, you can see all past actions performed on a selected branch. It will
display logs, merges, new commits, and database restores.

Mail catcher
The staging branch uses a copy of your production database, so it has information about
your customers. Testing the staging branch can send emails to real customers. This is why
emails are only activated on production branches. The staging and development branches
do not send real emails. If you want to test the email system before deploying any feature
into production, you can use the mail catcher where you can see the list of all outgoing
emails. The mail catcher will be available in the staging and development branches.

612 Managing, Deploying, and Testing with Odoo.sh

The mail catcher will display an email with the source and any attachments, as shown in
the following screenshot:

Figure 19.12 – Mail catcher

In the MAILS tab, you can see a list of all the captured mail with all attachments. Note
that the MAILS tab will only be displayed in the staging and development branches.

Web shell
From the SHELL tab, you can access the web shell. Here, you can access the source code,
the logs, the file store, and so on. It provides all of the shell features with editors such as
nano and Vim. You can install the Python package with pip and maintain multiple tabs.

Take a look at the following screenshot: you can access the web shell by clicking
on SHELL:

Accessing debugging options 613

Figure 19.13 – Web shell

With shell access, you can traverse between different directories and perform operations.
You can also use the pip command to install Python packages.

Here is the directory structure from the root directory:

.
├── data
│ ├── addons
│ ├── filestore
│ └── sessions
├── logs
├── Maildir
│ ├── cur
│ ├── new
│ └── tmp
├── repositories
│ └── git_github.com_pga-odoo_odooshdemo.git
├── src
│ ├── enterprise
│ ├── odoo
│ ├── themes
│ └── user
└── tmp

614 Managing, Deploying, and Testing with Odoo.sh

These directories can be different based on the type of branch. For example, Maildir will
only be available in staging and development branches as it uses a mail catcher.

Sometimes you need to restart the server or update the module from the shell. You can
use the following command in the shell to restart the server:

odoosh-restart

To update the module, execute the given command in the shell:

odoo-bin -u my_library --stop-after-init

The previous command will update the my_library module. If you want to update
multiple modules, you can pass module names separated by a comma.

Code editor
If you are not comfortable with shell access, Odoo.sh provides a full-featured editor.
Here, you can access the Python shell, the Odoo shell, and Terminal. You can also edit the
source code from here, as you can see in the given screenshot. After modifying the source
code, you can restart the server from the Odoo menu at the top:

Figure 19.14 – Web code editor

As depicted in the preceding screenshot, you will be able to update files from the editor.
Odoo will detect the changes automatically and restart the server. Note that if you make
changes in data files, you will need to update the module.

Accessing debugging options 615

Logs
From the LOGS tab, you can access all of the logs for your instance. You can see the live
logs without reloading the pages. You can filter the logs from here. This allows you to find
issues from the production server. Here is a list of the different log files you can find in the
LOGS tab:

• install.log: This is for the logs that are generated when installing the modules.
The logs of all the automated test cases will be located here.

• pip.log: You can add Python packages with the requirement.txt file. In this
log file, you will find the installation log of these Python packages.

• odoo.log: This is the normal access log of Odoo. You will find the full access log
here. You should look in this log to check production errors.

• update.log: When you upload a new module with a different manifest version,
your module gets updated automatically. This file contains the logs of these
automatic updates.

Take a look at the following screenshot. This shows the live logs for the production
branch:

Figure 19.15 – Server log

The preceding screenshot shows that the logs are live; so you will be able to see new logs
without reloading. Additionally, you can search for a particular log with the textbox in the
top-right corner of the UI.

616 Managing, Deploying, and Testing with Odoo.sh

There's more...
Some commonly used git commands are available on top of the module, as shown in
the following screenshot. You can run these by using the Run button on the left. These
commands can't be edited, but if you want to run a modified command, you can copy it
from here and then run it from the shell:

Figure 19.16 – Git commands

You can execute these git commands in the shell to perform various operations, as
depicted in the preceding screenshot.

Getting a backup of your instance
Backups are essential for the production server. Odoo.sh provides a built-in backup
facility. In this recipe, we will illustrate how you can download and restore backups from
Odoo.sh.

How to do it...
In the production branch, you can access the full information about the backups from the
BACKUPS tab at the top. This will display a list of backups:

Figure 19.17 – Backups manager

Checking the status of your builds 617

From the buttons at the top, you can carry out backup operations, such as downloading
the dump, performing a manual backup, or restoring from a backup. A database backup
can take a long time, so it will be done in the background. You will have a notification on
the bell icon at the top when it gets completed.

How it works...
Odoo automatically takes a backup of your production instance daily. Odoo also takes
an automatic backup whenever you merge a new development branch and update the
module. You can also perform a manual backup from the button at the top.

Odoo.sh keeps a total of 14 full backups for the Odoo production instance for up to 3
months—1 per day for 7 days, 1 per week for 4 weeks, and 1 per month for 3 months.
From the BACKUPS tab, you can access 1 month of backups (all 7 days of the week and 4
weekly backups).

If you are moving to Odoo.sh from the on-premises or online option, you can import
your database with the Import Database button. If you import your database directly into
production, it might cause issues. To avoid this, you should import the database into the
staging branch first.

Checking the status of your builds
Whenever you make a new commit, Odoo.sh creates the new commit. It also performs
automated test cases. To manage all of this, Odoo.sh has its own version of runbot. In this
recipe, we will check the statuses of all the builds.

How to do it...
Click on the Builds menu at the top to open the list of builds. Here, you can see a full
overview of all of the branches and their commits:

Figure 19.18 – Build status

618 Managing, Deploying, and Testing with Odoo.sh

By clicking on the Connect buttons, you can connect to the instances. You can see the
status of the build by the background color of the branch.

How it works...
On the runbot screen, you will get extra control over the builds. You can connect to
the previous builds from here. Different colors show the status of the build. Green
means that everything is fine; yellow indicates a warning, which can be ignored, but it is
recommended that you fix it; red means there is a critical issue that you have to fix before
merging the development branch into production. Red and yellow branches show the
exclamation icon, (!), near the Connect button. When you click on this, you will get
a popup with the error and warning log. Usually, you need to search the installation log
files to find the error or warning logs, but this popup will filter out the other logs and
only display the error and warning logs. This means that whenever a build goes red or
yellow, you should come here and fix the errors and warnings before merging them into
production.

Inactive development branches are destroyed after a few minutes. Normally, a new build
will be created when you add a new Commit button. If you want to reactivate the build
without a new commit, however, you can use the Rebuild button on the left side. The
builds for the staging branches are also destroyed after a few minutes, apart from the last
one, which will remain active.

There's more...
From the Status menu in the bar at the top, you can see the overall statistics of your
instance. The servers of the platform are continuously monitored. On the Status screen,
you will see the statistics of the server's availability, which will be computed automatically
from the platform's monitoring system. It will show data, including the server uptime.
The Status page will show the input and output data from the server. The Status page will
display the following information:

All Odoo.sh options 619

Figure 19.19 – Odoo.sh status

The data displayed in the Status tab is collected from the various monitoring tools used by
Odoo.sh.

All Odoo.sh options
Odoo.sh provides a few further options under the Settings menu. In this recipe, you will
see all of the important options used to modify the default behavior of certain things on
the platform.

Getting ready
We will be using the same Odoo.sh project that we used in previous recipes. You can
access all the Odoo.sh settings from the Settings menu in the top bar. If you are not able
to see this menu, that means you are accessing a shared project and you don't have admin
access.

How to do it...
Open the Settings page from the Settings menu in the top bar. We'll take a look at the
different options in the following sections.

620 Managing, Deploying, and Testing with Odoo.sh

Project Name
You can change the name of the Odoo.sh project from this option. The project name in
the input will be used to generate your production URL. Development builds also use this
project name as a prefix. In this case, the URL of our feature branch will be something
like https://parthgajjar-odooshdemo-feature-branch-260887.dev.
odoo.com:

Figure 19.20 – Change the project name

Note
This option will change the production URL, but you cannot get rid of
*.odoo.com. If you want to run a production branch on a custom domain,
you can add your custom domain in the Settings tab of the production branch.
You will also need to add a CNAME entry in your DNS manager.

Collaborators
You can share the project by adding collaborators. Here, you can search and add a new
collaborator by their GitHub ID. A collaborator can have either Admin or User access
rights. A collaborator with admin access rights will have full access (to the settings as
well). A collaborator with user access rights, on the other hand, will have restricted access
rights. They will be able to see all builds, but they will not be able to access the backups,
logs, shells, or emails of the production or staging branches, though they will have full
access to the development branches:

Figure 19.21 – Add collaborators

All Odoo.sh options 621

Note
You will need to give access to the GitHub repository to these users, too;
otherwise, they won't be able to create a new repository from the browser.

Public Access
Using this option, you can share builds with your end customer. This can be used for
demonstration or testing purposes. To do so, you need to enable the Allow public access
checkbox:

Figure 19.22 – Give public access to builds

Note that the staging branch will have the same password as your production branch.
However, in the development branch, you will have the username and password shown in
this table:

Table 19.1

Module installation
In the Settings tab of the development branch, you will see the Module installation
option for the development branches. It provides three options, as shown in the following
screenshot:

Figure 19.23 – Module installation options

622 Managing, Deploying, and Testing with Odoo.sh

By default, it is set to Install only my modules. This option will install all of your custom
modules and their dependent modules in the new development branches. Only automated
test cases are performed for these modules. The second option is Full installation. This
option will install all of the modules and perform automated test cases for all of those
modules. The final option is Install a list of modules. In this option, you will need to pass
a list of comma-separated modules, such as sales, purchases, and my_library. This
option will install the given modules and their dependencies.

This setting only applies to development builds. Staging builds duplicate the production
build, so they will have the same modules that are installed in the production branch and
perform test cases for modules that have an updated version manifest.

Submodules
The Submodules option is used when you are using private modules as submodules. This
setting is only needed for private submodules; public submodules will work fine, without
any issues. It is not possible to download private repositories publicly, so you need to give
repository access to Odoo.sh. Follow these steps to add access to the private submodules:

1. Copy the SSH URL of your private submodule repository in the input and click
on Add.

2. Copy the displayed public key.

3. Add this public key as a deploy key in your private repository settings in GitHub
(similar settings are also available on Bitbucket and GitLab):

Figure 19.24 – Set the private submodule

You can add multiple submodules too and you can remove submodules from here as well.

All Odoo.sh options 623

Database Workers
You can increase the number of workers for the production build. This is useful when
you have more users; usually, a single worker can handle 25 backend users or 5,000 daily
website visitors. This formula is not perfect; it can vary based on usage. This option is
not free, and increasing the number of workers will increase the price of your Odoo.sh
subscription:

Figure 19.25 – Set Database Workers

These database workers are multithreaded, and each one is able to handle 15 concurrent
requests. It is necessary to have enough workers to serve all incoming requests as they
arrive, but increasing the number of workers does not increase the speed of the requests'
processing time. It is only used to handle a large number of concurrent users.

Staging Branches
Staging branches are used to test a new development with the production database. By
default, Odoo.sh gives you one staging branch. If you are working on large projects with
lots of developers, this might be a bottleneck in the development process, so you can
increase the number of Staging Branches at an extra cost:

Figure 19.26 – Set staging branches

624 Managing, Deploying, and Testing with Odoo.sh

There's more...
Along with the configuration options, the Settings menu will also display some statistics
related to the platform.

Database size
This section will display the size of your production database. The Odoo.sh platform
charges the database at $1/GB/month. This option helps you keep track of your database.
The displayed database size is only for the production database; it does not include the
databases of the staging and development branches:

Figure 19.27 – Database size

Odoo source code revisions
This section will display the GitHub revision number of Odoo's project. It will display the
revision hash for the Community, Enterprise, and theme projects that are currently being
used in the platform. This source code will automatically be updated every week. This
option will help you get the exact same versions in your local machine. You can also check
this from the web shell, through the git command in the repository.

20
Remote Procedure

Calls in Odoo
The Odoo server supports Remote Procedure Calls (RPCs), which means that you can
connect Odoo instances from external applications, an example being if you want to
show the status of a delivery order in an Android application, which is written in Java.
Here, you can fetch the delivery status from Odoo via RPC. With the Odoo RPC API,
you can perform any CRUD operations on a database. Odoo RPC is not limited to CRUD
operations; you can also invoke public methods of any model. Of course, you will need to
have proper access to rights to perform these operations because RPC respects all of the
access rights and record rules you have defined in your database. Consequently, it is very
safe to use because the RPC respects all access rights and record rules. Odoo RPC is not
platform-dependent, so you can use it on any platform, including Odoo.sh, online, or self-
hosted platforms. Odoo RPC can be used with any programming language, so you can
integrate Odoo with any external application.

Odoo provides two types of RPC API—XML-RPC and JSON-RPC. In this chapter, we will
learn how to use these RPCs from an external program. Finally, you will learn how to use
Odoo RPC through OCA's odoorpc library.

626 Remote Procedure Calls in Odoo

In this chapter, we will cover the following recipes:

• Logging in to/connecting Odoo with XML-RPC

• Searching/reading records through XML-RPC

• Creating/updating/deleting records through XML-RPC

• Calling methods through XML-RPC

• Logging in to/connecting Odoo with JSON-RPC

• Fetching/searching records through JSON-RPC

• Creating/updating/deleting records through JSON-RPC

• Calling methods through JSON-RPC

• The OCA odoorpc library

• Generating API keys

Technical requirements
In this chapter, we will be using the my_library module, which we created in
Chapter 19, Managing, Deploying, and Testing with Odoo.sh. You can find the same
initial my_library module in the GitHub repository: https://github.com/
PacktPublishing/Odoo-12-Development-Cookbook-Third-Edition/
tree/master/Chapter19/r0_initial_module.

Here, we will not introduce a new language as you may not be familiar with it. We will
continue using Python to access the RPC API. You can use another language if you want
to, as the same procedure can be applied in any language to access the RPC.

To connect Odoo through the RPC, you will need a running Odoo instance to connect
with. Throughout this chapter, we will assume that you have the Odoo server running on
http://localhost:8069, that you called the book-db-14 database, and that you
have installed the my_library module therein. Note that you can connect any valid IP
or domain through the RPC.

Logging in to/connecting Odoo with XML-RPC
In this recipe, we will carry out user authentication through RPC to check whether the
credentials supplied are valid.

https://github.com/PacktPublishing/Odoo-12-Development-Cookbook-Third-Edition/tree/master/Chapter19/r0_initial_module
https://github.com/PacktPublishing/Odoo-12-Development-Cookbook-Third-Edition/tree/master/Chapter19/r0_initial_module
https://github.com/PacktPublishing/Odoo-12-Development-Cookbook-Third-Edition/tree/master/Chapter19/r0_initial_module

Logging in to/connecting Odoo with XML-RPC 627

Getting ready
To connect an Odoo instance through RPC, you will need a running Odoo instance
to connect with. We will assume that you have the Odoo server running on http://
localhost:8069 and that you have installed the my_library module.

How to do it...
Perform the following steps to carry out user authentication through RPC:

1. Add the odoo_authenticate.py file. You can place this file anywhere you want
because the RPC program will work independently.

2. Add the following code to the file:

from xmlrpc import client

server_url = 'http://localhost:8069'
db_name = 'book-db-14'
username = 'admin'
password = 'admin'

common = client.ServerProxy('%s/xmlrpc/2/common' %

 server_url)
user_id = common.authenticate(db_name, username,

 password, {})

if user_id:
 print("Success: User id is", user_id)
else:
 print("Failed: wrong credentials")

3. Run the following Python script from the Terminal with the following command:

python3 odoo_authenticate.py

This will print a success message with the user ID if you have provided a valid login name
and password.

628 Remote Procedure Calls in Odoo

How it works...
In this recipe, we used the Python xmlrpc library to access Odoo instances through
XML-RPC. This is a standard Python library and you do not have to install anything else
in order to use it.

For authentication, Odoo provides XML-RPC on the /xmlrpc/2/common endpoint.
This endpoint is used for meta methods, which do not require authentication. The
authentication() method itself is a public method, so it can be called publicly. The
authentication() method accepts four arguments—database name, username,
password, and user agent environment. The user agent environment is a compulsory
argument, but if you do not want to pass the user agent parameter, at least pass the empty
dictionary.

When you execute the authenticate() method with all valid arguments, it will make
a call to the Odoo server and perform authentication. It will then return the user ID,
provided the given login ID and password are correct. It will return False if the user is
not present or if the password is incorrect.

You need to use the authenticate() method before accessing any data through RPC.
This is because accessing data with the wrong credentials will generate an error.

Note
Odoo's online instances (*.odoo.com) use OAuth authentication,
and so the local password is not set on the instance. To use XML-RPC on
these instances, you will need to set the user's password manually from the
Settings | Users | Users menu of your instance.

Additionally, the methods used to access data require a user ID instead of a username, so
the authenticate() method is needed in order to get the ID of the user.

There's more...
The /xmlrpc/2/common endpoint provides one more method: version(). You can
call this method without credentials. It will return the version information of the Odoo
instance. The following is an example of the version() method usage:

from xmlrpc import client

server_url = 'http://localhost:8069'
common = client.ServerProxy('%s/xmlrpc/2/common' %

Searching/reading records through XML-RPC 629

 server_url)
version_info = common.version()

print(version_info)

The preceding program will generate the following output:

Figure 20.1 – Output of the version info program

This program will print version information based on your server.

Searching/reading records through XML-RPC
In this recipe, we will see how you can fetch the data from an Odoo instance through
RPC. The user can access most data, except data that is restricted by the security access
control and record rules. RPC can be used in many situations, such as collecting data
for analysis, manipulating a lot of data at once, or fetching data for display in another
software/system. There are endless possibilities, and you can use RPCs whenever
necessary.

Getting ready
We will create a Python program to fetch the book data from the library.book model.
Make sure you have installed the my_library module and that the server is running on
http://localhost:8069.

How to do it...
Perform the following steps to fetch a book's information through RPC:

1. Add the books_data.py file. You can place this file anywhere you want because
the RPC program will work independently.

2. Add the following code to the file:

from xmlrpc import client

server_url = 'http://localhost:8069'
db_name = 'book-db-14'

630 Remote Procedure Calls in Odoo

username = 'admin'
password = 'admin'

common = client.ServerProxy('%s/xmlrpc/2/common' %

 server_url)
user_id = common.authenticate(db_name, username,

 password, {})

models = client.ServerProxy('%s/xmlrpc/2/object' %

 server_url)

if user_id:
 search_domain = ['|', ['name', 'ilike', 'odoo'],

 ['name', 'ilike', 'sql']]
 books_ids = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'search',
 [search_domain],
 {'limit': 5})
 print('Books ids found:', books_ids)

 books_data = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'read',
 [books_ids, ['name', 'date_release']])
 print("Books data:", books_data)
else:
 print('Wrong credentials')

3. Run the Python script from the Terminal with the following command:

python3 books_data.py

The preceding program will fetch the book data and give you the following output:

Figure 20.2 – Data of books

Searching/reading records through XML-RPC 631

The output shown in the preceding screenshot is based on data in my database. The data
in your Odoo instance may be different data, and so the output will also be different.

How it works...
In order to access the book data, first you have to carry out authentication. At the
beginning of the program, we did authentication in the same way as we did in the Logging
in to/connecting Odoo with XML-RPC recipe earlier. If you provided valid credentials, the
authentication() method will return the id of the user's record. We will use this
user ID to fetch the book data.

The /xmlrpc/2/object endpoint is used for database operation. In our recipe, we
used the object endpoint to fetch the book data. In contrast to the /xmlrpc/2/
common endpoint, this endpoint does not work without credentials. With this endpoint,
you can access the public method of any model through the execute_kw() method.
execute_kw() takes the following arguments:

• Database name

• User ID (we get this from the authenticate() method)

• Password

• Model name, for example, res.partner, or library.book

• Method name, for example, search, read, or create

• An array of positional arguments

• A dictionary for keyword arguments (optional)

In our example, we want to fetch the book's information. This can be done through a
combination of search() and read(). Book information is stored in the library.
book model, so in execute_kw(), we use library.book as the model name and
search as the method name. This will call the ORM's search method and returns
record IDs. The only difference here is that the ORM's search method returns a record
set, while this search method returns a list of IDs.

In execute_kw(), you can pass arguments and keyword arguments for the method
provided. The search() method accepts a domain as a positional argument, so we
passed a domain to filter books. The search method has other optional keyword
arguments, such as limit, offset, count, and order, from which we have used the
limit parameter to fetch only five records. This will return the list of book IDs whose
names contain the odoo or SQL strings.

632 Remote Procedure Calls in Odoo

However, we need to fetch book data from the database. We will use the read method to
do this. The read method accepts a list of IDs and fields to complete the task. At the end
of step 3, we used the list of book IDs that we received from the search method and then
used the book IDs to fetch the name and release_date of the books. This will return
the list of the dictionary with the book's information.

Note
Note that the arguments and keyword arguments passed in execute_kw()
are based on the passed method. You can use any public ORM method
via execute_kw(). You just need to give the method name, the valid
arguments, and the keyword arguments. These arguments are going to be
passed in the method in the ORM.

There's more...
The data fetched through a combination of the search() and read() methods is
slightly time-consuming because it will make two calls. search_read is an alternative
method for fetching data. You can search and fetch the data in a single call. Here is the
alternative way to fetch a book's data with search_read().

Note
The read and search_read methods will return id fields even if the id
field is not requested. Furthermore, for the many2one field, you will get an
array made up of the id and display name. For example, the create_uid
many2one field will return data like this: [12, 'Parth Gajjar'].

It will return the same output as in the previous example:

from xmlrpc import client

server_url = 'http://localhost:8069'
db_name = ' book-db-14'
username = 'admin'
password = 'admin'

common = client.ServerProxy('%s/xmlrpc/2/common' %

 server_url)
user_id = common.authenticate(db_name, username,

 password, {})

Creating/updating/deleting records through XML-RPC 633

models = client.ServerProxy('%s/xmlrpc/2/object' %

 server_url)

if user_id:
 search_domain = ['|', ['name', 'ilike', 'odoo'],

 ['name', 'ilike', 'sql']]
 books_ids = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'search_read',
 [search_domain, ['name', 'date_release']],
 {'limit': 5})
 print('Books data:', books_ids)

else:
 print('Wrong credentials')

The search_read methods improve performance significantly as you get your result in
one RPC call, so use the search_read method instead of a combination of the search
and read methods.

Creating/updating/deleting records through
XML-RPC
In the previous recipe, we saw how to search and read data through RPC. In this recipe,
we will perform the remaining CRUD operations through RPC, which are Create, Update
(write), and Delete (unlink).

Getting ready
We will create the Python program to create, write, and unlink data on the
library.book model. Make sure you have installed the my_library module and that
the server is running on http://localhost:8069.

634 Remote Procedure Calls in Odoo

How to do it...
Perform the following steps to create, write, and update a book's information through
RPC:

1. Add the books_operation.py file. You can place this file anywhere you want
because the RPC program will work independently.

2. Add the following code to the books_operation.py file:

from xmlrpc import client

server_url = 'http://localhost:8069'
db_name = 'book-db-14'
username = 'admin'
password = 'admin'

common = client.ServerProxy('%s/xmlrpc/2/common' %

 server_url)
user_id = common.authenticate(db_name, username,

 password, {})

models = client.ServerProxy('%s/xmlrpc/2/object' %

 server_url)

if user_id:
 # create new books
 create_data = [
 {'name': 'Book 1', 'release_date':

 '2019-01-26'},
 {'name': 'Book 3', 'release_date':

 '2019-02-12'},
 {'name': 'Book 3', 'release_date':

 '2019-05-08'},
 {'name': 'Book 7', 'release_date':

 '2019-05-14'}
]
 books_ids = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'create',
 [create_data])
 print("Books created:", books_ids)

 # Write in existing book record

Creating/updating/deleting records through XML-RPC 635

 book_to_write = books_ids[1] # We will use ids of

 # recently created books
 write_data = {'name': 'Books 2'}
 written = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'write',
 [book_to_write, write_data])
 print("Books written:", written)

 # Delete the book record
 books_to_delete = books_ids[2:] # We will use ids

 # of recently created books
 deleted = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'unlink',
 [books_to_delete])
 print('Books unlinked:', deleted)

else:
 print('Wrong credentials')

3. Run the Python script from the Terminal with the given command:

python3 books_operation.py

The preceding program will create four records of the books. Updating the data in the
book records and later deleting two records gives you the following output (the IDs
created may be different depending on your database):

Figure 20.3 – Book operation output

The write and unlink methods return True if the operation is successful. This means
that if you get True in response, assume that a record has been updated or deleted
successfully.

636 Remote Procedure Calls in Odoo

How it works...
In this recipe, we performed create, write, and delete operations through
XML-RPC. This operation also uses the /xmlrpc/2/object endpoint and the execute_
kw() method.

The create() method supports the creation of multiple records in a single call. In step
2, we first created a dictionary with the book's information. Then we used the book's
dictionary to create new records of the books through XML-RPC. The XML-RPC call
needs two parameters to create new records—the create method name and the book
data. This will create the four book records in the library.book model. In ORM,
when you create the record, it returns a record set of created records, but if you create the
record's RPC, this will return a list of IDs.

The write method works in a similar way to the create method. In the write
method, you will need to pass a list of record IDs, and the field values, to be written.
In our example, we updated the name of the book created in the first section. This will
update the name of the second book from Book 3 to Book 2. Here, we passed only one
id of a book, but you can pass a list of IDs if you want to update multiple records in a
single call.

In the third section of the program, we deleted two books that we created in the first
section. You can delete records with the unlink method and a list of record IDs.

After the program is executed successfully, you will find two book records in the database,
as indicated in Figure 20.3. In the program, we have created four records, but we have also
deleted two of them, so you will only find two new records in the database.

There's more...
When you are performing a CRUD operation through RPC, this may generate an error
if you don't have permission to do that operation. With the check_access_rights
method, you can check whether the user has the proper access rights to perform a certain
operation. The check_access_rights method returns True or False values based
on the access rights of the user. Here is an example showing whether a user has the rights
to create a book record:

from xmlrpc import client

server_url = 'http://localhost:8069'
db_name = 'book-db-14'
username = 'admin'
password = 'admin'

Calling methods through XML-RPC 637

common = client.ServerProxy('%s/xmlrpc/2/common' %

 server_url)
user_id = common.authenticate(db_name, username,

 password, {})

models = client.ServerProxy('%s/xmlrpc/2/object' %

 server_url)

if user_id:
 has_access = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'check_access_rights',
 ['create'], {'raise_exception': False})
 print('Has create access on book:', has_access)
else:
 print('Wrong credentials')

Output: Has create access on book: True

When you are doing complex operations via RPC, the check_access_rights method
can be used prior to performing the operation to make sure you have proper access rights.

Calling methods through XML-RPC
With Odoo, the RPC API is not limited to CRUD operations; you can also invoke business
methods. In this recipe, we will call the make_available method to change the book's
state.

Getting ready
We will create the Python program to call make_available on the library.book
model. Make sure that you have installed the my_library module and that the server is
running on http://localhost:8069.

638 Remote Procedure Calls in Odoo

How to do it...
Perform the following steps to create, write, and update a book's information through
RPC:

1. Add the books_method.py file. You can place this file anywhere you want
because the RPC program will work independently.

2. Add the following code to the file:

from xmlrpc import client

server_url = 'http://localhost:8069'
db_name = 'book-db-14'
username = 'admin'
password = 'admin'

common = client.ServerProxy('%s/xmlrpc/2/common' %

 server_url)
user_id = common.authenticate(db_name, username,

 password, {})

models = client.ServerProxy('%s/xmlrpc/2/object' %

 server_url)

if user_id:
 # Create book with state draft
 book_id = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'create',
 [{'name': 'New Book', 'date_release':

 '2019-01-26', 'state': 'draft'}])

 # Call make_available method on new book
 models.execute_kw(db_name, user_id, password,
 'library.book', 'make_available',
 [[book_id]])

 # check book status after method call
 book_data = models.execute_kw(db_name, user_id,

 password,
 'library.book', 'read',
 [[book_id], ['name', 'state']])
 print('Book state after method call:',

Calling methods through XML-RPC 639

 book_data[0]['state'])
else:
 print('Wrong credentials')

3. Run the Python script from the Terminal with the following command:

python3 books_method.py

The preceding program will create one book using draft and then we will change the
book's state by calling the make_available method. After that, we will fetch the book
data to check the book's status, which will generate the following output:

Figure 20.4 – Changing the state of the book

The program of this recipe will create a new book record and change the state of the book
by calling the model method. By the end of the program, we have read the book record
and printed the updated state.

How it works...
You can call any modal method from RPC. This helps you to perform business logic
without encountering any side effects. For example, you created the sales order from RPC
and then called the action_confirm method of the sale.order method. This is
equivalent to clicking on the Confirm button on a sales order form.

You can call any public method of the model, but you cannot call a private method
from RPC. A method name that starts with _ is called a private method, such as _get_
share_url() and _get_data().

It is safe to use these methods, as they go through the ORM and follow all security rules. If
the method is accessing unauthorized records, it will generate errors.

In our example, we created a book with a state of draft. Then we made one more RPC
call to invoke the make_available method, which will change the book's state to
available. Finally, we made one more RPC call to check the state of the book. This will
show that the book's state has changed to available, as indicated in Figure 20.4.

640 Remote Procedure Calls in Odoo

Methods that do not return anything internally return None by default. Such methods
cannot be used from RPC. Consequently, if you want to use your method from RPC, at
least add the return True statement.

There's more...
If an exception is generated from a method, all of the operations performed in the
transaction will be automatically rolled back to the initial state. This is only applicable to
a single transaction (a single RPC call). For example, imagine you are making two RPC
calls to the server and there is an exception generated in the second call. This will roll
back the operation that is carried out in the second RPC call. The operation performed
through the first RPC call won't be rolled back. Consequently, you want to perform a
complex operation through RPC. It is recommended to perform this in a single RPC call
by creating a method in the model.

Logging in to/connecting Odoo with JSON-RPC
Odoo provides one more type of RPC API: JSON-RPC. As its name suggests, JSON-RPC
works in the JSON format and uses the jsonrpc 2.0 specification. In this recipe, we will
see how you can log in with JSON-RPC. The Odoo web client itself uses JSON-RPC to
fetch data from the server.

Getting ready
In this recipe, we will perform user authentication through JSON-RPC to check whether
the given credentials are valid. Make sure you have installed the my_library module
and that the server is running on http://localhost:8069.

How to do it...
Perform the following steps to perform user authentication through RPC:

1. Add the jsonrpc_authenticate.py file. You can place this file anywhere you
want because the RPC program will work independently.

2. Add the following code to the file:

import json
import random
import requests

Logging in to/connecting Odoo with JSON-RPC 641

server_url = 'http://localhost:8069'
db_name = 'book-db-14'
username = 'admin'
password = 'admin'

json_endpoint = "%s/jsonrpc" % server_url
headers = {"Content-Type": "application/json"}

def get_json_payload(service, method, *args):
 return json.dumps({
 "jsonrpc": "2.0",
 "method": 'call',
 "params": {
 "service": service,
 "method": method,
 "args": args
 },
 "id": random.randint(0, 100000000),
 })

payload = get_json_payload("common", "login", db_name,

 username, password)
response = requests.post(json_endpoint, data=payload,

 headers=headers)
user_id = response.json()['result']

if user_id:
 print("Success: User id is", user_id)
else:
 print("Failed: wrong credentials")

3. Run the Python script from the Terminal with the following command:

python3 jsonrpc_authenticate.py

When you run the preceding program and you have passed a valid login name and
password, the program will print a success message with the id of the user, as follows:

Figure 20.5 – Authenticating via JSON-RPC

642 Remote Procedure Calls in Odoo

The JSON authentication works just like XML-RPC, but it returns a result in the JSON
format.

How it works...
JSON-RPC is using the JSON format to communicate with the server using the /
jsonrpc endpoint. In our example, we used the Python requests package to make POST
requests, but if you want to, you can use other packages, such as urllib.

JSON-RPC only accepts a payload formatted in the JSON-RPC 2.0 specification. You may
refer to this link to learn more about the JSON-RPC format: https://www.jsonrpc.
org/specification. In our example, we created the get_json_payload()
method. This method will prepare the payload in the valid JSON-RPC 2.0 format. This
method accepts the service name and the method to call and the remaining arguments
will be placed in *args. We will be using this method in all subsequent recipes. JSON-
RPC accepts requests in JSON format, and these requests are only accepted if the request
contains a {"Content-Type": "application/json"} header. The results of the
requests will be in JSON format.

Like XML-RPC, all public methods, including login, come under the common service.
For this reason, we passed common as a service and login as a method to prepare the
JSON payload. The login method required some extra arguments, so we passed the
database name, username, and password. Then we made the POST request to the JSON
endpoint with the payload and headers. If you passed the correct username and password,
the method returns the user ID. The response will be in JSON format and you will get the
result in the result key.

Note
Note that the get_json_payload() method created in this recipe is used
to remove repetitive code from the example. It is not compulsory to use it, so
feel free to apply your own adaptations.

There's more...
Like XML-RPC, the version method is also available in JSON-RPC. This version
method comes under the common service and is accessible publicly. You can get version
information without login information. See the following example showing how to fetch
the version info of the Odoo server:

import json
import random

https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification

Fetching/searching records through JSON-RPC 643

import requests

server_url = 'http://localhost:8069'
json_endpoint = "%s/jsonrpc" % server_url
headers = {"Content-Type": "application/json"}

def get_json_payload(service, method, *args):
 ... # see full function definition in last section

payload = get_json_payload("common", "version")
response = requests.post(json_endpoint, data=payload,
headers=headers)

print(response.json())

This program will display the following output:

Figure 20.6 – Output of the version info program

This program will print version information based on your server.

Fetching/searching records through JSON-RPC
In the previous recipe, we saw how you can do authentication through JSON-RPC. In this
recipe, we will see how you can fetch the data from the Odoo instance with JSON-RPC.

Getting ready
In this recipe, we will fetch book information with JSON-RPC. Make sure you have
installed the my_library module and that the server is running on http://
localhost:8069.

644 Remote Procedure Calls in Odoo

How to do it...
Perform the following steps to fetch book data from the library.book model:

1. Add the jsonrpc_fetch_data.py file. You can place this file anywhere you
want because the RPC program will work independently.

2. Add the following code to the file:

place authentication and get_json_payload methods (see
first jsonrpc recipe)

if user_id:
 # search for the book's ids
 search_domain = ['|', ['name', 'ilike', 'odoo'],

 ['name', 'ilike', 'sql']]
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,
 'library.book', 'search',

 [search_domain], {'limit': 5})
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print('Search Result:', res)

 # ids will be in result keys

 # read data for books ids
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,
 'library.book', 'read', [res['result'],

 ['name', 'date_release']])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print('Books data:', res)
else:
 print("Failed: wrong credentials")

3. Run the Python script from the Terminal with the following command:

python3 jsonrpc_fetch_data.py

Fetching/searching records through JSON-RPC 645

The preceding program will give you the following output. The first RPC call will print the
book's ID, and the second one will print the information for the book's ID:

Figure 20.7 – Data of books

The output shown in the preceding screenshot is based on data in my database. The data
in your Odoo instance may be different data, and so the output will also be different.

How it works...
In the Logging in to/connecting Odoo with JSON-RPC recipe, we saw that you can validate
username and password. If the login details are correct, the RPC call will return
user_id. You can then use this user_id to fetch the model's data. Like XML-RPC, we
need to use the search and read combination to fetch the data from the model. To fetch
the data, we use object as a service and execute_kw() as the method. execute_
kw() is the same method that we used in XML-RPC for data, so it accepts the same
argument, as follows:

• Database name

• User ID (we get this from the authenticate() method)

• Password

• Model name, for example, res.partner, or library.book

• Method name, for example, search, read, or create

• An array of positional arguments (args)

• A dictionary for keyword arguments (optional) (kwargs)

In our example, we called the search method first. The execute_kw() method usually
takes mandatory arguments as positional arguments, and optional arguments as keyword
arguments. In the search method, domain is a mandatory argument, so we passed it in
the list and passed the optional argument limit as the keyword argument (dictionary).
You will get a response in JSON format, and in this recipe, the response of the search()
method RPC will have the book's IDs in the result key.

646 Remote Procedure Calls in Odoo

In step 2, we made an RPC call with the read method. To read the book's information, we
passed two positional arguments—the list of book IDs and the list of fields to fetch. This
RPC call will return the book information in JSON format and you can access it in the
result key.

Note
Instead of execute_kw(), you can use execute as the method. This does
not support keyword arguments, so you need to pass all of the intermediate
arguments if you want to pass some optional arguments.

There's more...
Similar to XML-RPC, you can use the search_read() method instead of the
search() and read() method combination as it is slightly time-consuming. Take a
look at the following code:

place authentication and get_json_payload methods (see first
jsonrpc recipe)

if user_id:
 # search and read for the book's ids
 search_domain = ['|', ['name', 'ilike', 'odoo'],

 ['name', 'ilike', 'sql']]
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,
 'library.book', 'search_read',

 [search_domain, ['name', 'date_release']],
 {'limit': 5})
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print('Books data:', res)
else:
 print("Failed: wrong credentials")

The code snippet is an alternative way to fetching book data with search_read(). It
will return the same output as in the previous example.

Creating/updating/deleting records through JSON-RPC 647

Creating/updating/deleting records through
JSON-RPC
In the previous recipe, we looked at how to search and read data through JSON-RPC.
In this recipe, we will perform the remaining CRUD operations through RPC—Create,
Update (write), and Delete (unlink).

Getting ready
We will create a Python program to create, write, and unlink data in the library.
book model. Make sure you have installed the my_library module and that the server
is running on http://localhost:8069.

How to do it...
Perform the following steps to create, write, and unlink a book's information
through RPC:

1. Add the jsonrpc_operation.py file. You can place this file anywhere you want
because the RPC program will work independently.

2. Add the following code to the file:

place authentication and get_json_payload method (see
last recipe for more)

if user_id:
 # creates the books records
 create_data = [
 {'name': 'Book 1', 'date_release':

 '2019-01-26'},
 {'name': 'Book 3', 'date_release':

 '2019-02-12'},
 {'name': 'Book 5', 'date_release':

 '2019-05-08'},
 {'name': 'Book 7', 'date_release':

 '2019-05-14'}
]
 payload = get_json_payload("object", "execute_kw",

 db_name, user_id, password, 'library.book',

 'create', [create_data])
 res = requests.post(json_endpoint, data=payload,

648 Remote Procedure Calls in Odoo

 headers=headers).json()
 print("Books created:", res)
 books_ids = res['result']

 # Write in existing book record
 book_to_write = books_ids[1]

 # We will use ids of recently created books
 write_data = {'name': 'Book 2'}
 payload = get_json_payload("object", "execute_kw",

 db_name, user_id, password, 'library.book',

 'write', [book_to_write, write_data])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print("Books written:", res)

 # Delete in existing book record
 book_to_unlink = books_ids[2:]

 # We will use ids of recently created books
 payload = get_json_payload("object", "execute_kw",

 db_name, user_id, password, 'library.book',

 'unlink', [book_to_unlink])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print("Books deleted:", res)

else:
 print("Failed: wrong credentials")

3. Run the Python script from the Terminal with the following command:

python3 jsonrpc_operation.py

The preceding program will create four books. Writing one book and deleting two books
gives you the following output (the IDs created may be different based on your database):

Figure 20.8 – Book operation output

Creating/updating/deleting records through JSON-RPC 649

The write and unlink methods return True if the operation is successful. This means
that if you get True in response, assume that a record has been updated or deleted
successfully.

How it works...
execute_kw() is used for the create, update, and delete operations. From
Odoo version 12, the create method supports the creation of multiple records. So, we
prepared the dictionary with information from the four books. Then we made the JSON-
RPC call with library.book as the model name and create as the method name.
This will create four book records in the database and return a JSON response with the
IDs of these newly created books. In the next RPC calls, we want to use these IDs to make
an RPC call for the update and delete operations, so we assign it to the books_ids
variable.

Note
Both JSON-RPC and XML-RPC generate an error when you try to create the
record without providing values for the required field, so make sure you have
added all the required fields to the create values.

In the next RPC call, we used the write method to update the existing records. The
write method accepts two positional arguments; the records to update and the values
to write. In our example, we have updated the name of the book by using the ID of the
second book from a created book's IDs. This will change the name of the second book
from Book 3 to Book 2.

Then we made the last RPC call to delete two book records. To do so, we used the unlink
method. The unlink method accepts only one argument, which is the ID of the records
you want to delete. This RPC call will delete the last two books.

There's more...
Like XML-RPC, you can use the check_access_rights method in JSON-RPC to
check whether you have access rights to perform the operation. This method requires
two parameters—the model name and the operation name. In the following example, we
check access rights for the create operation on the library.book model:

place authentication and get_json_payload method (see last
recipe for more)
if user_id:
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,

650 Remote Procedure Calls in Odoo

 'library.book', 'check_access_rights', ['create'])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print("Has create access:", res['result'])

else:
 print("Failed: wrong credentials")

This program will generate the following output:

Figure 20.9 – Output for checking access rights

When you are performing complex operations via RPC, the use of the check_access_
rights method can be used before performing an operation to make sure you have
proper access rights.

Calling methods through JSON-RPC
In this recipe, we will learn how to invoke a custom method of the model through JSON-
RPC. We will change the status of the book by calling the make_available() method.

Getting ready
We will create the Python program to call make_available on the library.book
model. Make sure you have installed the my_library module and that the server is
running on http://localhost:8069.

How to do it...
Perform the following steps to create, write, and update a book's information through
RPC:

1. Add the jsonrpc_method.py file. You can place this file anywhere you want
because the RPC program will work independently.

Calling methods through JSON-RPC 651

2. Add the following code to the file:

place authentication and get_json_payload method (see
last recipe for more)
if user_id:
 # Create the book in draft state
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,
 'library.book', 'create', [{'name': 'Book 1',

 'state': 'draft'}])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print("Has create access:", res['result'])
 book_id = res['result']

 # Change the book state by calling make_available

 # method
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,
 'library.book', 'make_available', [book_id])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()

 # Check the book status after method call
 payload = get_json_payload("object", "execute_kw",
 db_name, user_id, password,
 'library.book', 'read', [book_id,

 ['name', 'state']])
 res = requests.post(json_endpoint, data=payload,

 headers=headers).json()
 print("Book state after the method call:",

 res['result'])

else:
 print("Failed: wrong credentials")

3. Run the Python script from the Terminal with the following command:

python3 jsonrpc_method.py

652 Remote Procedure Calls in Odoo

The preceding command will create one book using draft and then we will change the
book state by calling the make_available method. After that, we will fetch the book
data to check the book's status, which will generate the following output:

Figure 20.10 – Changing the state of the book

The program of this recipe will create a new book record and change the state of the book
by calling the model method. By the end of the program, we will have read the book
record and printed the updated state.

How it works...
execute_kw() is capable of calling any public method of the model. As we saw in the
Calling methods through XML-RPC recipe, public methods are those whose names that
don't start with _ (underscore). Methods that start with _ are private and you cannot
invoke them from JSON-RPC.

In our example, we created a book with a state of draft. Then we made one more RPC
call to invoke the make_available method, which will change the book's state to
available. Finally, we made one more RPC call to check the state of the book. This will
show that the book's state has changed to available, as seen in Figure 20.10.

Methods that do not return anything internally return None by default. Such methods
cannot be used from RPC. Consequently, if you want to use your method from RPC, at
least add the return True statement.

The OCA odoorpc library
The Odoo Community Association (OCA) provides a Python library called odoorpc.
This is available at https://github.com/OCA/odoorpc. The odoorpc library
provides a user-friendly syntax from which to access Odoo data through RPC. It provides
a similar syntax to the server. In this recipe, we will see how you can use the odoorpc
library to perform operations through RPC.

https://github.com/OCA/odoorpc

The OCA odoorpc library 653

Getting ready
The odoorpc library is registered on the Python package (PyPI) index. In order to
use the library, you need to install it with the following command. You can use this in
a separate virtual environment if you want:

pip install OdooRPC

In this recipe, we will perform some basic operations using the odoorpc library.
We will use the library.book model to perform these operations. Make sure you
have installed the my_library module and that the server is running on http://
localhost:8069.

How to do it...
Perform the following steps to create, write, and update a book's information
through RPC:

1. Add the odoorpc_library.py file. You can place this file anywhere you want
because the RPC program will work independently.

2. Add the following code to the file:

import odoorpc

db_name = 'book-db-14'
user_name = 'admin'
password = 'admin'

Prepare the connection to the server
odoo = odoorpc.ODOO('localhost', port=8069)
odoo.login(db_name, user_name, password) # login

User information
user = odoo.env.user
print(user.name) # name of the user connected
print(user.company_id.name)

the name of user's company
print(user.email) # the email of user

BookModel = odoo.env['library.book']
search_domain = ['|', ['name', 'ilike', 'odoo'],

 ['name', 'ilike', 'sql']]
books_ids = BookModel.search(search_domain, limit=5)
for book in BookModel.browse(books_ids):

654 Remote Procedure Calls in Odoo

 print(book.name, book.date_release)

create the book and update the state
book_id = BookModel.create({'name': 'Test book', 'state':
'draft'})
print("Book state before make_available:", book.state)
book = BookModel.browse(book_id)
book.make_available()
book = BookModel.browse(book_id)
print("Book state before make_available:", book.state)

3. Run the Python script from the Terminal with the following command:

python3 odoorpc_library.py

The program will do the authentication, print user information, and perform an operation
in the library.book model. It will generate the following output:

Figure 20.11 – Output of the odoorpc library program

The preceding output is the result of several RPC calls. We have fetched user info, some
book info, and we have changed the state of the book.

How it works...
After installing the odoorpc library, you can start using it straightaway. To do so, you
will need to import the odoorpc package and then we will create the object of the ODOO
class by passing the server URL and port. This will make the /version_info call to the
server to check the connection. To log in, you need to use the login() method of the
object. Here, you need to pass the database name, username, and password.

The OCA odoorpc library 655

Upon successful login, you can access the user information at odoo.env.user.
odoorpc provides a user-friendly version of RPC, so you can use this user object
exactly like the record set in the server. In our example, we accessed the name, email, and
company name from this user object.

If you want to access the model registry, you can use the odoo.env object. You can call
any model method on the model. Under the hood, the odoorpc library uses jsonrpc,
so you can't invoke any private model method name that starts with an _. In our example,
we accessed the library.book model from the registry. After that, we called the
search method with the domain and limit parameters. This will return the IDs of the
books. By passing the book IDs to the browse() method, you can generate a record set
for the library.book model.

By the end of the program, we will have created a new book and changed the book's state
by calling the make_available() method. If you look closely at the syntax of the
program, you will see that it uses the same syntax as the server.

There's more...
Although it provides a user-friendly syntax like the server, you can use the library just like
the normal RPC syntax. To do so, you need to use the odoo.execute method with the
model name, method name, and arguments. Here is an example of reading some book
information in the raw RPC syntax:

import odoorpc

db_name = 'book-db-14'
user_name = 'admin'
password = 'admin'

Prepare the connection to the server
odoo = odoorpc.ODOO('localhost', port=8069)
odoo.login(db_name, user_name, password) # login

books_info = odoo.execute('library.book', 'search_read',
 [['name', 'ilike', 'odoo']], ['name', 'date_release'])
print(books_info)

656 Remote Procedure Calls in Odoo

See also
There are several other implementations of RPC libraries for Odoo, as follows:

• https://github.com/akretion/ooor

• https://github.com/OCA/odoorpc

• https://github.com/odoo/openerp-client-lib

• http://pythonhosted.org/OdooRPC

• https://github.com/abhishek-jaiswal/php-openerp-lib

Generating API keys
Odoo v14 has built-in support for the Two-Factor Authentication (2FA) feature. 2FA is
an extra layer of security for user accounts and users need to enter a password and time-
based code. If you have enabled 2FA, then you won't be able to use RPC by entering your
user ID and password. To fix this, you will need to generate an API key for the user. In this
recipe, we will see how you can generate API keys.

How to do it...
Perform the following steps to generate an API key for RPC:

1. Open user preferences and open the Account Security tab.

2. Click on the New API Key button:

https://github.com/akretion/ooor
https://github.com/OCA/odoorpc
https://github.com/odoo/openerp-client-lib
http://pythonhosted.org/OdooRPC
https://github.com/abhishek-jaiswal/php-openerp-lib

Generating API keys 657

Figure 20.12 – Generating a new API key

3. It will open a popup as in the following screenshot. Enter the API key name and
click on the Generate key button:

Figure 20.13 –Naming your key

658 Remote Procedure Calls in Odoo

4. This will generate the API key and show it in a new popup. Note down the API key
because you will need this again:

Figure 20.14 – Noting the generated API key

Once the API key is generated, you can start using the API key for RPC in the same way
as the normal password.

How it works...
Using API keys is straightforward. However, there are a few things that you need to take
care of. The API keys are generated per user and if you want to utilize RPC for multiple
users, you would need to generate an API key for each user. Additionally, the API key for
a user will have the same access rights as the user would have, so if someone gains access
to the key, they can perform all the operations that the user can. So, you need to keep the
API key secret.

Note
When you generate the API key, it is displayed only once. You need to note
down the key. If you lose it, there is no way to get it back. In such cases, you
would need to delete the API key and generate a new one.

Using the API key is very simple. During RPC calls, you just need to use the API key
instead of the user password. You will be able to call RPC even if 2FA is activated.

21
Performance
Optimization

With the help of the Odoo framework, you can develop large and complex applications.
Good performance is key to the success of any project. In this chapter, we will explore
the patterns and tools you need to optimize performance. You will also learn about the
debugging techniques used to find the root cause of a performance issue.

In this chapter, we will cover the following recipes:

• The prefetching pattern for recordsets

• The in-memory cache – ormcache

• Generating differently sized images

• Accessing grouped data

• Creating or writing multiple records

• Accessing records through database queries

• Profiling Python code

660 Performance Optimization

The prefetching pattern for recordsets
When you access data from a recordset, it makes a query in the database. If you have a
recordset with multiple records, fetching records on it can make a system slow because of
the multiple SQL queries. In this recipe, we will explore how you can use the prefetching
pattern to solve this issue. By following the prefetching pattern, you can reduce the
number of queries needed, which will improve performance and make your system faster.

How to do it…
Take a look at the following code; it is a normal compute method. In this method, self
is a recordset of multiple records. When you iterate directly on the recordset, prefetching
works perfectly:

Correct prefetching
def compute_method(self):
 for rec in self:
 print(rec.name)

But in some cases, prefetching becomes more complex, such as when fetching data with
the browse method. In the following example, we browse records one by one in the for
loop. This will not use prefetching efficiently and it will execute more queries than usual:

Incorrect prefetching
def some_action(self):
 record_ids = []
 self.env.cr.execute("some query to fetch record id")
 for rec in self.env.cr.fetchall():
 record = self.env['res.partner'].browse(rec[0])
 print(record.name)

By passing a list of IDs to the browse method, you can create a recordset of multiple
records. If you perform operations on this recordset, prefetching works perfectly fine:

Correct prefetching
def some_action(self):
 record_ids = []
 self.env.cr.execute("some query to fetch record id")
 record_ids = [rec[0] for rec in self.env.cr.fetchall()]
 recordset = self.env['res.partner'].browse(record_ids)
 for record_id in recordset:
 print(record.name)

The prefetching pattern for recordsets 661

This way, you will not lose the prefetching feature and data will be fetched in a single
SQL query.

How it works...
When you are working with multiple recordsets, prefetching helps reduce the number
of SQL queries. It does this by fetching all of the data at once. Usually, prefetching works
automatically in Odoo, but you lose this feature in certain circumstances, such as when
you split records as depicted in the following example:

recs = [r for r in recordset r.id not in [1,2,4,10]]

The preceding code given will split the recordset into parts, and so you cannot take
advantage of prefetching.

Using prefetching correctly can significantly improve the performance of the Object-
Relational Mapping (ORM). Let's explore how prefetching works under the hood.
When you iterate on a recordset through a for loop and access the value of a field in
the first iteration, the prefetching process starts its magic. Instead of fetching data for the
current record in the iteration, prefetching will fetch the data for all of the records. The
logic behind this is that if you are accessing a field in a for loop, you are likely to fetch
that data for the next record in the iteration as well. In the first iteration of the for loop,
prefetching will fetch the data for all of the recordsets and keep it in the cache. In the next
iteration of the for loop, data will be served from this cache, instead of making a new
SQL query. This will reduce the query count from O(n) to O(1).

Let's suppose the recordset has 10 records. When you are in the first loop and access the
name field of the record, it will fetch the data for all 10 records. This is not only the case
for the name field; it will also fetch all the fields for those 10 records. In the subsequent
for loop iterations, the data will be served from the cache. This will reduce the number of
queries from 10 to 1:

for record in recordset: # recordset with 10 records
 record.name # Prefetch data of all 10 records in the first
loop
 record.email # data of email will be served from the cache.

Note that the prefetching will fetch the value of all of the fields (except the *2many fields)
even if those fields are not used in the body of the for loop. This is because the extra
columns only have a minor impact on performance compared to the extra queries for
each column.

662 Performance Optimization

Note
Sometimes, prefetched fields could reduce performance. In these cases, you
can disable prefetching by passing False into the prefetch_fields
context, as follows: recordset.with_context(prefetch_
fields=False).

The prefetch mechanism uses the environment cache to store and retrieve record values.
This means that once the records are fetched from the database, all subsequent calls for
fields will be served from the environment cache. You can access the environment cache
using the env.cache attribute. To invalidate the cache, you can use the invalidate_
cache() method of the environment.

There's more...
If you split recordsets, the ORM will generate a new recordset with a new prefetch context.
Performing operations on such recordsets will only prefetch the data for the respective
records. If you want to prefetch all the records after prefetch, you can do this by
passing the prefetch record IDs to the with_prefetch() method. In the following
example, we split the recordset into two parts. Here, we passed a common prefetch context
in both recordsets, so when you fetch the data from one of them, the ORM will fetch the
data for the other and put the data in the cache for future use:

recordset = ... # assume recordset has 10 records.
recordset1 = recordset[:5].with_prefetch(recordset._ids)
recordset2 = recordset[5:].with_prefetch(recordset._ids)

The prefetch context is not limited to splitting recordsets. You can also use the with_
prefetch() method to have a common prefetch context between multiple recordsets.
This means that when you fetch data from one record, it will fetch data for all other
recordsets too.

The in-memory cache – ormcache
The Odoo framework provides the ormcache decorator to manage the in-memory cache.
In this recipe, we will explore how you can manage the cache for your functions.

The in-memory cache – ormcache 663

How to do it...
The classes of this ORM cache are available at /odoo/tools/cache.py. In order to
use these in any file, you will need to import them as follows:

from odoo import tools

After importing the classes, you can use the ORM cache decorators. Odoo provides
different types of in-memory cache decorator. We'll take a look at each of these in the
following sections.

ormcache
This one is the simplest and most-used cache decorator. You need to pass the parameter
name upon which the method's output depends. The following is an example method with
the ormcache decorator:

@tools.ormcache('mode')
def fetch_mode_data(self, mode):
 # some calculations
 return result

When you call this method for the first time, it will be executed, and the result will be
returned. ormcache will store this result based on the value of the mode parameter.
When you call the method again with the same mode value, the result will be served from
the cache without executing the actual method.

Sometimes, your method's result depends on the environment attributes. In these cases,
you can declare the method as follows:

@tools.ormcache('self.env.uid', 'mode')
def fetch_data(self, mode):
 # some calculations
 return result

The method given in this example will store the cache based on the environment user and
the value of the mode parameter.

664 Performance Optimization

ormcache_context
This cache works similarly to ormcache, except that it depends on the parameters plus
the value in the context. In this cache's decorator, you need to pass the parameter name
and a list of context keys. For example, if your method's output depends on the lang and
website_id keys in the context, you can use ormcache_context:

@tools.ormcache_context('mode', keys=('website_id','lang'))
def fetch_data(self, mode):
 # some calculations
 return result

The cache in the preceding example will depend on the mode argument and the values of
context.

ormcache_multi
Some methods carry out an operation on multiple records or IDs. If you want to add
a cache on these kinds of method, you can use the ormcache_multi decorator. You
need to pass the multi parameter, and during the method call, the ORM will generate
the cache keys by iterating on this parameter. In this method, you will need to return the
result in dictionary format with an element of the multi parameter as a key. Take a look
at the following example:

@tools.ormcache_multi('mode', multi='ids')
def fetch_data(self, mode, ids):
 result = {}
 for i in ids:
 data = ... # some calculation based on ids
 result[i] = data
 return result

Suppose we called the preceding method with [1,2,3] as the IDs. The method will
return a result in {1:... , 2:..., 3:... } format. The ORM will cache the
result based on these keys. If you make another call with [1,2,3,4,5] as the IDs,
your method will receive [4, 5] as the ID parameter, so the method will carry out the
operations for the 4 and 5 IDs and the rest of the result will be served from the cache.

The in-memory cache – ormcache 665

How it works...
The ORM cache keeps the cache in dictionary format (the cache lookup). The keys of this
cache will be generated based on the signature of the decorated method and the values
will be the result. Put simply, when you call the method with the x, y parameters and
the result of the method is x+y, the cache lookup will be {(x, y): x+y}. This means
that the next time you call this method with the same parameters, the result will be served
directly from this cache. This saves computation time and makes the response faster.

The ORM cache is an in-memory cache, so it is stored in RAM and occupies memory. Do
not use ormcache to serve large data, such as images or files.

Warning
Methods using this decorator should never return a recordset. If you do
this, they will generate psycopg2.OperationalError because the
underlying cursor of the recordset is closed.

You should use the ORM cache on pure functions. A pure function is a method that
always returns the same result for the same arguments. The output of these methods only
depends on the arguments, and so they return the same result. If this is not the case, you
need to manually clear the cache when you perform operations that make the cache's state
invalid. To clear the cache, call the clear_caches() method:

self.env[model_name].clear_caches()

Once you have cleared the cache, the next call to the method will execute the method and
store the result in the cache, and all subsequent method calls with the same parameter will
be served from the cache.

There's more...
The ORM cache is the Least Recently Used (LRU) cache, meaning that if a key in the
cache is not used frequently, it will be removed. If you don't use the ORM cache properly,
it might do more harm than good. For instance, if the argument passed in a method
is always different, then each time Odoo will look in the cache first and then call the
method to compute. If you want to learn how your cache is performing, you can pass the
SIGUSR1 signal to the Odoo process:

kill -SIGUSR1 496

666 Performance Optimization

Here, 496 is the process ID. After executing the command, you will see the status of the
ORM cache in the logs:

> 2020-11-08 09:22:49,350 496 INFO book-db-14 odoo.tools.cache:
1 entries, 31 hit, 1 miss, 0 err, 96.9% ratio,
for ir.actions.act_window._existing

> 2020-11-08 09:22:49,350 496 INFO book-db-14 odoo.tools.cache:
1 entries, 1 hit, 1 miss, 0 err, 50.0% ratio,
for ir.actions.actions.get_bindings

> 2020-11-08 09:22:49,350 496 INFO book-db-14 odoo.tools.cache:
4 entries, 1 hit, 9 miss, 0 err, 10.0% ratio,
for ir.config_parameter._get_param

The percentage in the cache is the hit-to-miss ratio. It's the success ratio of the result being
found in the cache. If the cache's hit-to-miss ratio is too low, you should remove the ORM
cache from the method.

Generating differently sized images
Large images can be troublesome for any website. They increase the size of web pages and
consequently make them slower as a result. This leads to bad SEO rankings and visitor
loss. In this recipe, we will explore how you can create images of different sizes; by using
the right images, you can reduce the web page size and improve the page loading time.

How to do it...
You will need to inherit image.mixin in your model. Here is how you can add image.
mixin to your model:

class LibraryBook(models.Model):

 _name = 'library.book'

 _description = 'Library Book'

 _inherit = ['image.mixin']

The mixin will automatically add five new fields to the books model to store images of
different sizes. See the How it works… section to learn about all five fields.

Generating differently sized images 667

How it works...
The image.mixin instance will automatically add five new binary fields to the model.
Each field stores image with a different resolution. Here is a list of the fields and their
resolutions:

• image_1920: 1,920x1,920

• image_1024: 1,024x1,024

• image_512: 512x1,512

• image_256: 256x256

• image_128: 128x128

Of all the fields given here, only image_1920 is editable. The other image fields are
read-only and update automatically when you change the image_1920 field. So, in the
backend form view of your model, you need to use the image_1920 field to allow the
user to upload images. But by doing so, we are loading large image_1920 images in
the form view. However, there is a way to improve performance by using image_1920
images in the form view but displaying smaller images. For instance, we can utilize the
image_1920 field but display an image_128 field. To do this, you can use the following
syntax:

<field name="image_1920" widget="image"
 options="{'preview_image': 'image_128'}" />

Once you have saved the image to the field, Odoo will automatically resize the image and
store it to the respective field. The form view will display the converted image_128 as we
use it as preview_image.

Note
The image.mixin model is AbstractModel, so its table is not present
in the database. You need to inherit it in your model in order to use it.

With this image.mixin, you can store an image with a maximum resolution of
1,920x1,920. If you save an image with a resolution higher than 1,920x1,920, Odoo will
reduce it to 1,920x1,920. While doing so, Odoo will also preserve the resolution of the
image, avoiding any distortion. As an example, if you upload the image with a 2,400x1,600
resolution, the image_1920 field will have a resolution of 1,920x1,280.

668 Performance Optimization

There's more...
With image.mixin, you can get images with certain resolutions, but what if you want to
use an image with another resolution? To do so, you can use a binary wrapper field image,
as in the following example:

image_1500 = fields.Image("Image 1500", max_width=1500, max_
height=1500)

This will create a new image_1500 field, and storing the image will resize it to
1,500x1,500 resolution. Note that this is not part of image.mixin. It just reduces the
image to 1,500x1,500, so you need to add this field in the form view; editing it will not
make changes to the other image fields in image.mixin. If you want to link it with an
existing image.mixin field, add the related="image_1920" attribute in the field
definition.

Accessing grouped data
When you want data for statistics, you often need it in a grouped form, such as a monthly
sales report, or a report that shows sales per customer. It is time-consuming to search
records and group them manually. In this recipe, we will explore how you can use the
read_group() method to access grouped data.

How to do it...
Perform the following steps:

Note
The read_group() method is widely used for statistics and smart stat
buttons.

1. Let's assume that you want to show the number of sales orders on the partner form.
This can be done by searching sales orders for a customer and then counting the
length:

in res.partner model
so_count = fields.Integer(compute='_compute_so_count',
string='Sale order count')

def _compute_so_count(self):
 sale_orders = self.env['sale.order'].
search(domain=[('partner_id', 'in', self.ids)])

Accessing grouped data 669

 for partner in self:
 partner.so_count = len(sale_orders.
filtered(lambda so: so.partner_id.id == partner.id))

The previous example will work, but not optimally. When you display the so_count field
on the tree view, it will fetch and filter sales orders for all the partners in a list. With this
small amount of data, the read_group() method won't make much difference, but as
the amount of data grows, it could be a problem. To fix this issue, you can use the read_
group method.

2. The following example will do the same as the preceding one, but it only consumes
one SQL query, even for large datasets:

in res.partner model
so_count = fields.Integer(compute='_compute_so_count',
string='Sale order count')

def _compute_so_count(self):
 sale_data = self.env['sale.order'].read_group(
 domain=[('partner_id', 'in', self.ids)],
 fields=['partner_id'], groupby=['partner_id'])
 mapped_data = dict([(m['partner_id'][0], m['partner_
id_count']) for m in sale_data])
 for partner in self:
 partner.so_count = mapped_data[partner.id]

The previous code snippet is optimized as it obtains the sales order count directly via
SQL's GROUP BY feature.

How it works...
The read_group() method internally uses the GROUP BY feature of SQL. This makes
the read_group method faster, even if you have large datasets. Internally, the Odoo
web client uses this method in the charts and the grouped tree view. You can tweak the
behavior of the read_group method by using different arguments.

Let's explore the signature of the read_group method:

def read_group(self, domain, fields, groupby, offset=0,
limit=None, orderby=False, lazy=True):

670 Performance Optimization

The different parameters available for the read_group method are as follows:

• domain: This is used to filter records. This will be the search criteria for the
read_group method.

• fields: This is a list of the fields to fetch with the grouping. Note that the fields
mentioned here should be in the groupby parameter, unless you use some
aggregate functions. The read_group method supports the SQL aggregate
functions. Let's say you want to get the average order amount per customer. In this
case, you can use read_group as follows:

self.env['sale.order'].read_group([], ['partner_id',
'amount_total:avg'], ['partner_id'])

If you want to access the same field twice but with a different aggregate function, the
syntax is a little different. You need to pass the field name as alias:agg(field_
name). This example will give you the total and average number of orders per
customer:

self.env['sale.order'].read_group([], ['partner_id',
'total:sum(amount_total)', 'avg_total:avg(amount_
total)'], ['partner_id'])

• groupby: This parameter will be a list of fields by which the records are grouped.
It lets you group records based on multiple fields. To do this, you will need to pass
a list of fields. For example, if you want to group the sales orders by customer and
order state, you can pass ['partner_id ', 'state'] in this parameter.

• offset: This parameter is used for pagination. If you want to skip a few records,
you can use this parameter.

• limit: This parameter is used for pagination; it indicates the maximum number of
records to fetch.

• lazy: This parameter accepts Boolean values. By default, its value is True. If this
parameter is True, the results are grouped only by the first field in the groupby
parameter. You will get the remaining groupby parameters and the domain in the
__context and __domain keys in the result. If the value of this parameter is set
to False, it will group the data by all fields in the groupby parameter.

Creating or writing multiple records 671

There's more...
Grouping by date fields can be complicated because it is possible to group records based
on days, weeks, quarters, months, or years. You can change the grouping behavior of
the date field by passing groupby_function after : in the groupby parameter. If
you want to group the monthly total of the sales orders, you can use the read_group
method:

self.env['sale.order'].read_group([], ['total:sum(amount_
total)'], ['order_date:month'])

Possible options for date grouping are day, week, month, quarter, and year.

See also
Refer to the documentation if you want to learn more about PostgreSQL aggregate
functions: https://www.postgresql.org/docs/current/functions-
aggregate.html.

Creating or writing multiple records
If you are new to Odoo development, you might execute multiple queries to write or
create multiple records. In this recipe, we will look at how to create and write records in
batches.

How to do it...
Creating multiple records and writing on multiple records works differently for each,
under the hood. Let's see each of these records one by one.

Creating multiple records
Odoo supports creating records in batches. If you are creating a single record, simply pass
a dictionary with the field values. To create records in a batch, you just need to pass a list
of these dictionaries instead of a single dictionary. The following example creates three
book records in a single create call:

vals = [{
 'name': "Book1",
 'date_release': '2018/12/12',
}, {
 'name': "Book2",
 'date_release': '2018/12/12',

https://www.postgresql.org/docs/current/functions-aggregate.html
https://www.postgresql.org/docs/current/functions-aggregate.html

672 Performance Optimization

}, {
 'name': "Book3",
 'date_release': '2018/12/12',
}]

self.env['library.book'].create(vals)

The code snippet will create the records for three new books.

Writing on multiple records
If you are working on multiple versions of Odoo, you should be conscious of how the
write method works under the hood. As of version 13, Odoo handles write differently.
It uses a delayed approach for updates, which means that it does not write data in the
database immediately. Odoo writes the data to the database only when necessary or when
flush() is called.

Here are two examples of the write method:

Example 1
data = {...}
for record in recordset:
 record.write(data)

Example 2
data = {...}
recordset.write(data)

If you are using Odoo v13 or above, then there will not be any issues regarding
performance. However, if you are using an older version, the second example will be
much faster than the first one because the first example will execute a SQL query in each
iteration.

How it works...
In order to create multiple records in a batch, you need to pass value dictionaries in the
form of a list to create new records. This will automatically manage batch-creating the
records. When you create records in a batch, internally doing so will insert a query for
each record. This means that creating records in a batch is not done in a single query. This
doesn't mean, however, that creating records in batches does not improve performance.
The performance gain is achieved through batch-calculating computing fields.

Creating or writing multiple records 673

Things work differently for the write method. Most things are handled automatically by
the framework. For instance, if you write the same data on all records, the database will
be updated with only one UPDATE query. The framework will even handle it if you update
the same record again and again in the same transaction, as follows:

recordset.name= 'Admin'

recordset.email= 'admin@example.com'

recordset.name= 'Administrator'

recordset.email= 'admin-2@example.com'

In the previous code snippet, only one query will be executed for write with final values
of name=Administrator and email=admin-2@example.com. This does not have
a bad impact on performance as the assigned values are in the cache and written in later in
a single query.

Things are different if you are using the flush() method in between, as shown in the
following example:

recordset.name= 'Admin'

recordset.email= 'admin@example.com'

recordset.flush()

recordset.name= 'Administrator'

recordset.email= 'admin-2@example.com'

The flush() method updates the values from the cache to the database. So, in the
previous example, two UPDATE queries will be executed; one with data before the flush
and a second query with data after the flush.

There's more...
The delayed update is only for Odoo version 13, and if you are using an older version, then
writing a single value will execute the UPDATE query immediately. Check the following
examples to explore the correct usage of the write operation for an older version of
Odoo:

incorrect usage
recordset.name= 'Admin'
recordset.email= 'admin@example.com'

correct usage
recordset.write({'name': 'Admin', 'email'= 'admin@example.
com'})

674 Performance Optimization

Here, in the first example, we have two UPDATE queries, while the second example will
only take one UPDATE query.

Accessing records through database queries
The Odoo ORM has limited methods, and sometimes it is difficult to fetch certain data
from the ORM. In these cases, you can fetch data in the desired format, and you need to
perform an operation on the data to get a certain result. Due to this, it becomes slower. To
handle these special cases, you can execute SQL queries in the database. In this recipe, we
will explore how you can run SQL queries from Odoo.

How to do it...
You can perform database queries using the self._cr.execute method:

1. Add the following code:

self.flush()

self._cr.execute("SELECT id, name, date_release FROM
library_book WHERE name ilike %s", ('%odoo%',))

data = self._cr.fetchall()

print(data)

Output:
[(7, 'Odoo basics', datetime.date(2018, 2, 15)), (8,
'Odoo 11 Development Cookbook', datetime.date(2018, 2,
15)), (1, 'Odoo 12 Development Cookbook', datetime.
date(2019, 2, 13))]

2. The result of the query will be in the form of a list of tuples. The data in the tuples
will be in the same sequence as the fields in the query. If you want to fetch data in
dictionary format, you can use the dictfetchall() method. Take a look at the
following example:

self.flush()

self._cr.execute("SELECT id, name, date_release FROM
library_book WHERE name ilike %s", ('%odoo%',))

data = self._cr.dictfetchall()

print(data)

Output:
[{'id': 7, 'name': 'Odoo basics', 'date_release':
datetime.date(2018, 2, 15)}, {'id': 8, 'name': 'Odoo

Accessing records through database queries 675

11 Development Cookbook', 'date_release': datetime.
date(2018, 2, 15)}, {'id': 1, 'name': 'Odoo 12
Development Cookbook', 'date_release': datetime.
date(2019, 2, 13)}]

If you want to fetch only a single record, you can use the fetchone() and
dictfetchone() methods. These methods work like fetchall() and
dictfetchall(), but they only return a single record, and you need to call the
fetchone() and dictfetchone() methods multiple times if you want to fetch
multiple records.

How it works...
There are two ways to access the database cursor from the recordset: one is from the
recordset itself, such as self._cr, and the other is from the environment, in particular,
self.env.cr. This cursor is used to execute database queries. In the preceding example,
we saw how you can fetch data through raw queries. The table name is the name of the
model after replacing . with _, so the library.book model becomes library_book.

If you have noticed, we have used self.flush() before executing a query. The reason
behind this is that Odoo uses cache excessively and the database might not have the
correct values. self.flush() will push all the delayed updates to the database and
conduct all the dependent computations as well, and you will get correct values from the
database. The flush() method also supports a few parameters that help you control
what is being flushed in the database. The parameters are as follows:

• The fname parameter needs a list of fields that you want to flush to the database.

• The records parameter needs a recordset, and it is used if you want to flush
certain records only.

If you are executing INSERT or UPDATE queries, you will also need to execute flush()
after executing the query because the ORM might not be aware of the change you made
and it might have cached records.

676 Performance Optimization

You need to consider a few things before you execute raw queries. Only use raw queries
when you have no other choice. By executing raw queries, you are bypassing the ORM
layers. You are therefore also bypassing security rules and the ORM's performance
advantages. Sometimes, wrongly built queries can introduce SQL injection vulnerabilities.
Consider the following example, in which the queries could allow an attacker to perform
SQL injection:

very bad, SQL injection possible
self.env.cr.execute('SELECT id, name FROM library_book WHERE
name ilike + search_keyword + ';')

good
self.env.cr.execute('SELECT id, name FROM library_book WHERE
name ilike %s ';', (search_keyword,))

Don't use the string format function either; it will also allow an attacker to perform SQL
injection. Using SQL queries makes your code harder to read and understand for other
developers, so avoid using them wherever possible.

Information
A lot of Odoo developers believe that executing SQL queries makes operations
faster as it bypasses the ORM layer. This is not completely true, however; it
depends on the case. In most operations, the ORM performs better and faster
than RAW queries, because data is served from the recordset cache.

There's more...
Operations done in one transaction are only committed at the end of the transaction. If an
error occurs in the ORM, the transaction is rolled back. If you have made an INSERT or
UPDATE query and you want to make it permanent, you can use self._cr.commit()
to commit the changes.

Note
Note that using commit() can be dangerous because it can put records in an
inconsistent state. An error in the ORM can cause incomplete rollbacks, so only
use commit() if you are completely sure of what you're doing.

If you are using the commit() method, then there's no need to use flush() afterward.
The commit() method flushes the environment internally.

Profiling Python code 677

Profiling Python code
Sometimes, you will be unable to pinpoint the cause of an issue. This is especially true of
performance issues. Odoo provides some built-in profiling tools that help you find the real
cause of an issue.

How to do it...
Perform the following steps to do this recipe:

1. Odoo's profiler is available at odoo/tools/profiler.py. In order to use the
profiler in your code, import it into the file:

from odoo.tools.profiler import profile

2. After importing it, you can use the profile decorator on the methods. To profile
a particular method, you need to add the profile decorator to it. Take a look at
the following example. We put the profile decorator in the make_available
method:

 @profile
 def make_available(self):
 if self.state != 'lost':
 self.write({'state': 'available'})
 return True

3. So, when this method is called, it will print the full statistics in the logs:

calls queries ms
library.book ------------------------ /Users/pga/odoo/
test/my_library/models/library_book.py, 24

1 0 0.01 @profile
 def make_available(self):
1 3 12.81 if self.state !=
'lost':
1 7 20.55 self.
write({'state': 'available'})
1 0 0.01 return True

Total:
1 10 33.39

678 Performance Optimization

How it works...
After adding the profile decorator on your method, when you call that method, Odoo
will print the full statistics in the log, as shown in the previous example. It will print the
statistics in three columns. The first column will contain the number of calls or how many
times a line is executed. (This number will increase when the line is inside a for loop or
the method is recursive.) The second column represents the number of queries fired with
the given line. The last column is the time taken by the given line in milliseconds. Note
that the time displayed in this column is relative; it is faster when the profiler is off.

The profiler decorator accepts some optional arguments, which help you to get
detailed statistics of the method. The following is the signature of the profile decorator:

def profile(method=None, whitelist=None, blacklist=(None,),
files=None,
 minimum_time=0, minimum_queries=0):

The following is a list of parameters supported by the profile() method:

• whitelist: This parameter will accept a list of model names to display in the log.

• files: This parameter will accept a list of filenames to display.

• blacklist: This parameter will accept a list of model names that you do not want
to display in the log.

• minimum_time: This will accept an integer value (in milliseconds). It will hide
logs whose total time is less than the given amount.

• minimum_queries: This will accept an integer value of the number of queries. It
will hide the logs whose total number of queries is less than the given amount.

There's more...
One further type of profiler that is available in Odoo generates a graph for the executed
method. This profiler is available in the misc package, so you need to import it from
there. It will generate a file with statistics data that will generate a graph file. To use this
profiler, you need to pass the file path as an argument. When this function is called, it will
generate a file at the given location. Take a look at the following example, which generates
the make_available.prof file on the desktop:

from odoo.tools.misc import profile
...
@profile('/Users/parth/Desktop/make_available.profile')
def make_available(self):
 if self.state != 'lost':

Profiling Python code 679

 self.write({'state': 'available'})
 self.env['res.partner'].create({'name': 'test',
'email': 'test@ada.asd'})
 return True

When the make_available method is called, it will generate a file on the desktop. To
convert this data into graph data, you will need to install the gprof2dot tool and then
execute the following command to generate the graph:

gprof2dot -f pstats -o /Users/parth/Desktop/prof.xdot /Users/
parth/Desktop/make_available.profile

This command will generate the prof.xdot file on the desktop. Then, you can display
the graph with xdot with the following command:

xdot /Users/parth/Desktop/prof.xdot

The preceding xdot command will generate the graph shown in the following figure:

Figure 21.1 – Graph to check execution times

Here, you can zoom in, check the call stack, and look at details of the execution times for
the methods.

22
Point of Sale

So far in this book, we have explored two different code bases. The first one is the backend
code base, which is used to create views, actions, menus, wizards, and so on. The second
one is the backend code base, which is used to create web pages, controllers, snippets, and
so on. In this chapter, we will explore a third code base, which is used for the Point of Sale
application. You might wonder why the Point of Sale application needs a different code
base. This is because it uses a different architecture, in order to work offline as well. In this
chapter, we will see how to modify the Point of Sale application.

In this chapter, we will cover the following recipes:

• Adding custom JavaScript/SCSS files

• Adding an action button on the keyboard

• Making RPC calls

• Modifying the Point of Sale screen UI

• Modifying existing business logic

• Modifying customer receipts

682 Point of Sale

Note
The Point of Sale application is mostly written in JavaScript. This chapter is
written assuming that you have a basic knowledge of JavaScript. This chapter
also uses the OWL framework, so if you are unaware of these JavaScript terms,
check out Chapter 16, The Odoo Web Library (OWL).

Throughout this chapter, we will be using an add-on module called pos_demo. This
pos_demo module will have a dependency on point_of_sale as we are going to do
customization in the Point of Sale application. To get started with this recipe quickly, we
have prepared an initial pos_demo module, and you can grab it from the Chapter21/
r0_initial_module/pos_demo directory in the GitHub repository of this book.

Technical requirements
All the code used in this chapter can be downloaded from the following GitHub
repository: https://github.com/PacktPublishing/Odoo-14-
Development-Cookbook-Fourth-Edition/tree/master/Chapter22.

Adding custom JavaScript/SCSS files
The Point of Sale app uses different asset bundles for managing JavaScript and style sheet
files. In this recipe, we will learn how to add SCSS and JavaScript files to the Point of Sale
asset bundle.

Getting ready
In this recipe, we will load an SCSS style sheet and a JavaScript file into the Point of Sale
application.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter22
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter22

Adding custom JavaScript/SCSS files 683

How to do it...
To load assets in the Point of Sale application, follow these steps:

1. Add a new SCSS file at /pos_demo/static/src/scss/pos_demo.scss and
insert the following code:

.pos .pos-content {
 .price-tag {
 background: #00abcd;
 width: 100%;
 right: 0;
 left: 0;
 top:0;
 }
}

2. Add a JavaScript file at /pos_demo/static/src/js/pos_demo.js and add
the following:

console.log('Point of Sale JavaScript loaded');

3. Register these JavaScript and SCSS files into the point_of_sale assets:

<?xml version="1.0" encoding="utf-8"?>

<odoo>

 <template id="assets" inherit_id="point_of_sale.
assets">

 <xpath expr="." position="inside">

 <script type="text/javascript"

 src="/pos_demo/static/src/js/pos_demo.
js"></script>

 <link rel="stylesheet"

 href="/pos_demo/static/src/scss/pos_demo.
scss"/>

 </xpath>

 </template>

</odoo>

Install the pos_demo module. To see your changes in action, start the new session from
the Point of Sale | Dashboard menu.

684 Point of Sale

How it works...
In this recipe, we loaded one JavaScript file and one SCSS file into the Point of Sale
application. In step 1, we changed the background color and the border radius of the
pricing label of the product card. After installing the pos_demo module, you will be able
to see changes to the pricing labels:

Figure 22.1 – Updated price label

In step 2, we added the JavaScript file. In it, we added the log to the console. In order to
see the message, you will need to open your browser's developer tools. In the Console tab,
you will see the following log. This shows that your JavaScript file is loaded successfully.
Right now, we have only added the log to the JavaScript file, but in upcoming recipes, we
will add more to it:

Figure 22.2 – JavaScript loaded (log in the console)

In step 3, we added the JavaScript file and the SCSS file into the Point of Sale assets. The
external ID of the Point of Sale assets is point_of_sale.assets. Here, only the
external ID is different; everything else works like regular assets. If you don't know how
assets work in Odoo, refer to the Static-assets management recipe in Chapter 14, CMS
Website Development.

Adding an action button on the keyboard 685

There's more...
Odoo also has an add-on module for Point of Sale solutions for restaurants. Note that this
Point of Sale restaurant module is just an extension of the Point of Sale application. If you
want to do customization in the restaurant module, you will need to add your JavaScript
and SCSS files to the same point_of_sale.assets asset bundle.

Adding an action button on the keyboard
As we discussed in the previous recipe, the Point of Sale application is designed in such a
way that it works offline. Thanks to this, the code structure of the Point of Sale application
is different from the remaining Odoo applications. The code base of the Point of Sale app
is largely written with JavaScript and provides different utilities for customization. In this
recipe, we will use one such utility and create an action button at the top of the keyboard
panel.

Getting ready
In this recipe, we will be using the pos_demo module created in the Adding custom
JavaScript/SCSS files recipe. We will add a button at the top of the keyboard panel. This
button will be a shortcut for applying a discount to the order lines.

How to do it...
Follow these steps to add a 5% discount action button to the keyboard panel for the Point
of Sale application:

1. Add the following code to the /static/src/js/pos_demo.js file, which will
define the action button:

odoo.define('pos_demo.custom', function (require) {

 "use strict";

 const PosComponent = require('point_of_sale.
PosComponent');

 const ProductScreen = require('point_of_sale.
ProductScreen');

 const Registries = require('point_of_sale.
Registries');

 class PosDiscountButton extends PosComponent {

686 Point of Sale

 async onClick() {

 const order = this.env.pos.get_order();

 if (order.selected_orderline) {

 order.selected_orderline.set_discount(5);

 }

 }

 }

 PosDiscountButton.template = 'PosDiscountButton';

 ProductScreen.addControlButton({

 component: PosDiscountButton,

 condition: function () {

 return true;

 },

 });

 Registries.Component.add(PosDiscountButton);

 return PosDiscountButton;

});

2. Add the QWeb template for the button in the /static/src/xml/pos_demo.
xml file:

<?xml version="1.0" encoding="UTF-8"?>

<templates id="template" xml:space="preserve">

 <t t-name="PosDiscountButton" owl="1">

 <span class="control-button "

 t-on-click="onClick">

 <i class="fa fa-gift"></i>

 5%

 Discount

 </t>

</templates>

Adding an action button on the keyboard 687

3. Register the QWeb template in the manifest file as follows:

'qweb': [
 'static/src/xml/pos_demo.xml'
]

4. Update the pos_demo module to apply the changes. After that, you will be able to
see a 5% Discount button above the keyboard:

Figure 22.3 – Discount button

After clicking this, the discount will be applied to the selected order line.

How it works...
In Odoo v14, code based on the Odoo Point of Sale application is completely re-written
using the OWL framework. You can learn more about the OWL framework in Chapter 16,
The Odoo Web Library (OWL).

688 Point of Sale

To create the action button in the Point of Sale application, you will need to extend
PosComponent. Now, PosComponent is defined in the point_of_sale.
PosComponent namespace, and so to use it in your code, you will need to import it. In
step 1, we imported screens with require('point_of_sale.PosComponent').
Then we created PosDiscountButton by extending PosComponent. If you want to
learn how the require mechanism works in Odoo JavaScript, refer to the Adding CSS
and JavaScript for a website recipe in Chapter 14, CMS Website Development. In step 1,
we have also imported point_of_sale.ProductScreen and point_of_sale.
Registries. Now, point_of_sale.ProductScreen is used to add a button to
the Point of Sale screen via the addControlButton method. Finally, we have added
a registered button to point_of_sale.Registries, which is the global registry that
contains all OWL components.

PosComponent has some built-in utilities that give access to useful information such as
order details, Point of Sale configuration, and more. You can access it via the this.env
variable. In our example, we have accessed the current order information via the this.
env.pos.get_order() method. Then, we used the set_discount() method to set
a 5% discount.

In step 2 and step 3, we added the OWL template, which will be rendered over the Point of
Sale keyboard. If you wish to learn more about this, please refer to Chapter 16, The Odoo
Web Library (OWL).

There's more...
The addControlButton() method supports one more parameter, which is
condition. This parameter is used to hide/show the button based on some condition.
The value of this parameter is a function that returns a Boolean. Based on the returned
value, the Point of Sale system will hide or show the button. Take a look at the following
example for more information:

 ProductScreen.addControlButton({

 component: POSDiscountButton,

 condition: function() {

 return this.env.pos.config.module_pos_discount;

 },

 });

Making RPC calls 689

The condition discount button is only displayed if the discount is enabled from the
Point of Sale configuration.

Making RPC calls
Though the Point of Sale application works offline, it is still possible to make RPC calls
to the server. The RPC call can be used for any operation; you can use it for CRUD
operations, or to perform an action on the server. In this recipe, we will make an RPC call
to fetch information about a customer's last five orders.

Getting ready
In this recipe, we will be using the pos_demo module created in the Adding an action
button on the keyboard recipe. We will define the action button. When the user clicks on
the action button, we will make an RPC call to fetch the order information and display it
on the popup.

How to do it...
Follow these steps to display the last five orders for the selected customer:

1. Add the following code to the /static/src/js/pos_demo.js file; this will
add a new action button to fetch and display the information about the last five
orders when a user clicks on the button:

class PosLastOrderButton extends PosComponent {

 // Place step 2 here

}

PosLastOrderButton.template = 'PosLastOrderButton';

ProductScreen.addControlButton({

 component: PosLastOrderButton,

 condition: function () {

 return true;

 },

});

Registries.Component.add(PosLastOrderButton);

690 Point of Sale

2. Add the onClick function to the PosLastOrders component to manage button
clicks:

async onClick() {

 var self = this;

 const order = this.env.pos.get_order();

 if (order.attributes.client) {

 var domain = [['partner_id', '=', order.
attributes.client.id]];

 this.rpc({

 model: 'pos.order', method: 'search_read',

 args: [domain, ['name', 'amount_total']],

 kwargs: { limit: 5 },

 }).then(function (orders) {

 if (orders.length > 0) {

 var order_list = _.map(orders, function
(o) {

 return { 'label': _.str.sprintf("%s -
TOTAL: %s", o.name, o.amount_total) };

 });

 self.showPopup('SelectionPopup', { title:
'Last 5 orders', list:order_list });

 } else {

 self.showPopup('ErrorPopup', { body: 'No
previous orders found' });

 }

 });

 } else {

 self.showPopup('ErrorPopup', { body: 'Please
select the customer' });

 }

}

3. Add the QWeb template for the button to the /static/src/xml/pos_demo.
xml file:

<t t-name="PosLastOrderButton" owl="1">

 <i class="fa fa-shopping-cart"></i>

Making RPC calls 691

 Last Orders

</t>

4. Update the pos_demo module to apply the changes. After that, you will be able to
see the Last orders button above the keyboard panel. When this button is clicked, a
popup will be displayed with the order information:

Figure 22.4 – Last five orders of a customer

If no previous orders are found, a warning will be displayed instead of an order list.

How it works...
In step 1, we created and registered the action button. If you want to learn more about the
action button, refer to the Adding an action button on the keyboard recipe of this chapter.
Before going into the technical details, let's understand what we wanted to accomplish
with this action button. Once clicked, we want to display information for the last five
orders for the selected customer. There will be a few cases where the customer is not
selected, or customers have no previous orders. In such cases, we want to show a popup
with an appropriate message.

692 Point of Sale

The RPC utility is available with the this.rpc attribute of the component. In step 2,
we added the click-handler function. On clicking the action button, the click-handler
function will be called. This function will make the RPC call the server to fetch the order
information. We used the rpc() method to make RPC calls. The following is a list of the
parameters you can pass in the rpc() method:

• model: The name of the model on which you want to perform the operation

• method: The name of the method you want to invoke

• args: A list of compulsory positional arguments accepted by the method

• kwargs: A dictionary of the optional arguments accepted by the method

In this recipe, we used the search_read method to fetch data through RPC. We passed
the customer domain to filter the orders. We also passed limit keyword arguments
to fetch only five orders. rpc.query() is an asynchronous method and returns a
Promise object, so to handle the result, you will need to use the then() method, or you
can use the await keyword.

Note
The RPC call does not work in offline mode. If you have a good internet
connection and you do not use offline mode frequently, you can use RPCs.
Although the Odoo Point of Sale application works offline, a few operations,
such as creating or updating a customer, require an internet connection, as
those features use RPC to call internally.

We have displayed the previous order information in the popup. We have used
SelectionPopup, which is used to display a selectable list; we used it to show the
last five orders. We have also used ErrorPopup to display a warning message when a
customer is not selected or no previous orders were found.

In step 3, we added the QWeb template for the action button. The Point of Sale application
will render this template to display the action button.

There's more...
There are plenty of other popup utilities. For example, NumberPopup is used to take
number input from the user. Refer to the files in the addons/point_of_sale/
static/src/xml/Popups directory to see all these utilities.

Modifying the Point of Sale screen UI 693

Modifying the Point of Sale screen UI
The UI of the Point of Sale application is written with the OWL QWeb template. In this
recipe, we will learn how you can modify UI elements in the Point of Sale application.

Getting ready
In this recipe, we will be using the pos_demo module created in the Making RPC calls
recipe. We will modify the UI of the product card and display the profit margin per
product.

How to do it...
Follow these steps to display the profit margin on the product card:

1. Add the following code to the /static/src/js/pos_demo.js file to fetch the
extra field for the product's actual price:

const pos_model = require('point_of_sale.models');

pos_model.load_fields("product.product", ["standard_
price"]);

2. Add the following code to /static/src/xml/pos_demo.xml in order to
display a profit margin product card:

<t t-name="ProductItem" t-inherit="point_of_sale.
ProductItem"
 t-inherit-mode="extension" owl="1">

 <xpath expr="//span[hasclass('price-tag')]"
position="after">

 <span t-if="props.product.standard_price"

 class="sale_margin">

 <t t-set="margin"
 t-value="props.product.get_
price(pricelist, 1) - props.product.standard_price"/>

 <t t-esc="env.pos.format_currency(margin)"/>

 </xpath>

</t>

694 Point of Sale

3. Add the following style sheet to style the margin text:

.sale_margin {
 top: 21px;
 line-height: 15px;
 right: 2px;
 background: #CDDC39;
 position: absolute;
 border-radius: 10px;
 padding: 0px 5px;
}

Update the pos_demo module to apply the changes. After that, you will be able to see the
profit margin on the product card:

Figure 22.5 – Profit margins for products

If the product cost is not set on a product, then the product card will not display a profit
margin, so make sure you set the product cost.

Modifying existing business logic 695

How it works...
In this recipe, we want to use the standard_price field as the purchase cost of the
product. This field is not loaded by default in Point of Sale applications. In step 1, we
added the standard_price field for the product.product model. After this, the
product data will have one more field: standard_price.

In step 2, we extended the default product card template. You will need to use the t-
inherit attribute to extend the existing QWeb template. Then, you need to use XPath to
select the element on which you want to perform the operation. If you want to learn more
about XPaths, refer to the Changing existing views – view inheritance recipe of Chapter 9,
Backend Views.

To fetch the product sale price, we have used the product properties sent from the
parent OWL component. get_price() is a method of the product model, and we
receive the product properties in the ProductItem component. Then, we calculated
the margin by using the product price and product cost. If you want to learn more about
this, please refer to Chapter 16, The Odoo Web Library (OWL)

In step 3, we added the style sheet to modify the position of the margin element. This will
add a background color to the margin element and place it under the price pill.

Modifying existing business logic
In the previous recipes, we saw how to fetch data through an RPC and how to modify
the UI of the Point of Sale application. In this recipe, we will see how you can modify or
extend the existing business logic.

Getting ready
In this recipe, we will be using the pos_demo module created in the Modifying the Point
of Sale screen UI recipe, which is where we fetched the purchase price of a product and
displayed the product margin. Now, in this recipe, we will show a warning to the user if
they sell the product below the product margin.

696 Point of Sale

How to do it...
Most of the business logic of the Point of Sale application is written in JavaScript, so we
just need to make changes to it to achieve the goal of this recipe. Add the following code
to /static/src/js/pos_demo.js to show a warning when the user sells a product
below the purchase price:

const UpdatedProductScreen = ProductScreen =>

 class extends ProductScreen {

 _setValue(val) {

 super._setValue(val);

 const orderline = this.env.pos.get_order().
selected_orderline;

 if (orderline && orderline.product.standard_price)
{

 var price_unit = orderline.get_unit_price() *
(1.0 - (orderline.get_discount() / 100.0));

 if (orderline.product.standard_price > price_
unit) {

 this.showPopup('ErrorPopup', { title:
'Warning', body: 'Product price set below cost of product.' });

 }

 }

 }

 };

Registries.Component.extend(ProductScreen,
UpdatedProductScreen);

Update the pos_demo module to apply the changes. After the update, add the discount
on the order line in such a way that the product price becomes less than the purchase
price. A popup will appear with the following warning:

Modifying existing business logic 697

Figure 22.6 – Warning on a big discount

Note that when you set the product price below the actual cost, a warning will be
displayed, and it will continue to pop up every time you take an action, such as when you
change the quantity for the product order.

How it works...
The Point of Sale component register provides an extend method to make changes to an
existing function. Internally, it is monkey patching the actual component definition.

In our example, we have modified the _setValue() method. The _setValue()
method of ProductScreen is called whenever the user makes a change to the order
line. We wanted to show a warning if the user set the product price below the product
cost. So, we defined a new _setValue() method and called the super method; this
will make sure that whatever actions the user performs are applied. After the call to the
super method, we wrote our logic, which checks whether the product sale price is higher
than the actual cost of the product. If not, then we show a warning to the user.

698 Point of Sale

Note
Using super can break things if it's not used carefully. If the method is
inherited from several files, you must call the super method; otherwise, it
will skip the logic in the subsequent inheritance. This sometimes leads to a
broken internal data state.

We placed our business logic after the default implementation (super) is called. If you
want to write business logic before the default implementation, you can do so by moving
the super call to the end of the function.

Modifying customer receipts
When you are customizing a Point of Sale application, a common request you get from
customers is to modify customer receipts. In this recipe, you will learn how to modify
customer receipts.

Getting ready
In this recipe, we will be using the pos_demo module created in the Modifying existing
business logic recipe. We will add one line to the Point of Sale receipt to show how much
money the customer saved in the order.

How to do it...
Follow these steps to modify a customer receipt in the Point of Sale application:

1. Add the following code to the /static/src/js/pos_demo.js file. This will
add extra data in the receipt environment:

var models = require('point_of_sale.models');

var _super_order = models.Order.prototype;

models.Order = models.Order.extend({

 export_for_printing: function () {

 var result = _super_order.export_for_printing.
apply(this, arguments);

 var savedAmount = this.saved_amount();

 if (savedAmount > 0) {

 result.saved_amount = this.pos.format_
currency(savedAmount);

 }

Modifying customer receipts 699

 return result;

 },

 saved_amount: function() {

 const order = this.pos.get_order();

 return _.reduce(order.orderlines.models,

 function (rem, line) {

 var diffrence = (line.product.lst_price *
line.quantity) - line.get_base_price();

 return rem + diffrence;

 }, 0);

 }

});

2. Add the following code in /static/src/xml/pos_demo.xml. This will extend
the default receipt template and add our customization:

<t t-name="OrderReceipt" t-inherit="point_of_sale.
OrderReceipt"
 t-inherit-mode="extension" owl="1">

 <xpath expr="//div[hasclass('before-footer')]"
position="before">

 <div style="text-align:center;">

 <div t-if="receipt.saved_amount">

 You saved

 <t t-esc="receipt.saved_amount"/>

 on this order.

 </div>

 </div>

 </xpath>

</t>

700 Point of Sale

Update the pos_demo module to apply the changes. After that, add a product with the
discount and check the receipt; you will see one extra line in the receipt:

Figure 22.7 – Updated receipt

The receipt will not display the amount saved screen if it is zero or negative.

How it works...
There is nothing new in this recipe. We just updated the receipt by using the previous
recipes. In step 1, we overrode the export_for_printing() function to send more
data to the receipt environment. Whatever you are sending from the export_for_
printing() method will be available in the QWeb template of the receipt. We compared
the product's base price with the product price in the receipt to calculate how much
money the customer saved. We sent this data to the receipt environment via the saved_
amount key.

In step 2, we modified the default QWeb template of the receipt. The template name of the
actual receipt is OrderReceipt, so we used it as a value in the t-inherit attribute.
In step 1, we'd already sent the information needed to modify the receipt. In the QWeb
template, we get the saved amount in the receipt.saved_amount key, so we just
add one more <div> element before the footer. This will print the saved amount in the
receipt. If you want to learn more about overriding, refer to the Modifying the Point of Sale
screen UI recipe.

23
Managing Emails

in Odoo
Email integration is the most prominent feature of Odoo. You can send and receive emails
directly from the Odoo user interface. You can even manage email threads on business
documents, such as leads, sales orders, and projects. In this chapter, we will explore a few
important ways to deal with emails in Odoo.

Here, we'll cover the following topics:

• Configuring incoming and outgoing email servers

• Managing chatter on documents

• Managing activities on documents

• Sending emails using the Jinja template

• Sending emails using the QWeb template

702 Managing Emails in Odoo

• Managing the email alias

• Logging user changes in a chatter

• Sending periodic digest email

Technical requirements
All the code used in this chapter can be downloaded from https://github.com/
PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/
tree/master/Chapter23.

Configuring incoming and outgoing email
servers
Before you start sending and receiving emails in Odoo, you will need to configure the
incoming and outgoing email servers. In this recipe, you will learn how to configure email
servers in Odoo.

Getting ready
There is no development needed for this recipe, but you will require email server
information, such as the server URL, port, server type, username, and password. We will
use this information to configure the email servers.

Note
If you are using Odoo Online or Odoo.sh, you do not need to configure
the email servers. You can send and receive emails without any complex
configurations on those platforms. This recipe is for on-premises Odoo
instances.

Configuring incoming and outgoing email servers 703

How to do it...
Configuring incoming and outgoing email servers involves a few steps that are common
to the processes for incoming and outgoing servers and a few steps that are unique to
each kind of server. So, first we will see the common configuration steps, and then we will
configure the incoming and outgoing email servers individually. The following are the
steps that are required for both incoming and outgoing email servers:

1. Open the General Settings form menu, at Settings | General Settings.

2. Go to the Discuss section and enable External Email Servers. This will display the
following options:

Figure 23.1 – Setting an alias domain

3. In the Alias Domain field, enter the domain name on which your email server is
running. Then save the configuration.

Configuring the incoming email server
Perform the following steps to configure the incoming email server:

1. Open General Settings and click on the Incoming Email Servers link. This will
redirect you to a list view of incoming email servers.

704 Managing Emails in Odoo

2. Click on the Create button, which will open the following form view. Enter the
details of your incoming email server (see the How it works… section for an
explanation of each field):

Figure 23.2 – Configuring the incoming email server

3. Click on the Test & Confirm button to verify your configuration. It will show an
error message if you have wrongly configured the incoming email server.

Configuring the outgoing email server
Follow these steps to configure the outgoing email server:

1. Open General Settings and enable the External Email Servers option, then click
on the Outgoing Email Servers link. This will redirect you to the list view of
outgoing email servers.

2. Click on Create, which will open the following form view. Enter the details of
your outgoing email server (see the How it works… section for explanations of
each field):

Configuring incoming and outgoing email servers 705

Figure 23.3 – Configuring the outgoing email server

3. Click on Test Connection at the bottom of the screen to verify your configuration.
It will show an error message if you have wrongly configured the outgoing
email server.

The outgoing email server will display the error dialog even if you have configured it
properly. Look for the Connection Test Succeeded! Everything seems properly set up!
message in the error dialog body. It means your outgoing server is configured correctly.

How it works...
The steps given in this recipe are self-explanatory and do not require further explanation.
But the outgoing email and incoming email records have several fields, so let's see
their purpose.

Here is a list of the fields used to configure the incoming email server:

• Name: The name of the server, which helps you identify a specific incoming email
server when you have configured multiple incoming email servers.

• Server Type: Here you need to choose from three options: POP, IMAP, and Local.
The value of this field will be based on your email service provider.

• Server Name: The domain of the server on which the service is running.

• Port: The number of the port on which the server is running.

• SSL/TLS: Check this field if you are using SSL/TLS encryption.

706 Managing Emails in Odoo

• Username: The email address for which you are fetching emails.

• Password: The password for the email address provided.

• Active: The Active field is used to enable or disable the incoming email server.

• Keep Attachment: Turn off this option if you do not want to manage attachments
from incoming emails.

• Keep Original: Turn on this option if you want to keep the original email along
with the preceding one.

The following is a list of fields used for configuring the outgoing email server:

• Description: The description of the server, which helps you identify a specific
incoming email server when you have configured multiple incoming email servers.

• Priority: This field is used to define the priority of the outgoing email server. Lower
numbers get higher priority, so email servers with a lower priority number will be
used most.

• SMTP Server: The domain of the server on which the service is running.

• SMTP Port: The number of the port on which the server is running.

• Connection Security: The type of security used to send the email.

• Username: The email account used for sending the emails.

• Password: The password for the email account provided.

• Active: The Active field is used to enable or disable the outgoing email server.

There's more...
By default, incoming emails are fetched every 5 minutes. If you want to change this
interval, follow these steps:

1. Activate developer mode.

2. Open Scheduled Actions at Settings | Technical | Automation | Scheduled
Actions.

3. Search for and open the scheduled action named Mail: Fetchmail.

4. Change the interval using the field labeled Execute Every.

Managing chatter on documents 707

Managing chatter on documents
In this recipe, you will learn how to manage chatter on your documents and add a
communication thread to a record.

Getting ready
For this recipe, we will reuse the my_library module from Chapter 8, Advanced
Server-Side Development Techniques. You can grab an initial copy of the module from the
Chapter23/ 00_initial_module directory of the GitHub repository for this book.
In this recipe, we will add chatter to the library.book.rent model.

How to do it...
Follow these steps to add chatter on the records of the library.book.rent model:

1. Add the mail module dependency in the __manifest__.py file:

...
'depends': ['base', 'mail'],
...

2. Inherit mail.thread in the Python definition of the library.book.rent
model:

class LibraryBookRent(models.Model):
 _name = 'library.book.rent'
 _inherit = ['mail.thread']
...

3. Add chatter widgets on the form view of the library.book.rent model:

...
</sheet>
<div class="oe_chatter">
 <field name="message_follower_ids" widget="mail_
followers"/>
 <field name="message_ids" widget="mail_thread"/>
</div>
</form>
...

708 Managing Emails in Odoo

4. Install the my_library module to see the changes in action:

Figure 23.4 – Chatter on the rent form view

As shown in the preceding screenshot, after installing the module, you will be able to see
chatter in the form view.

How it works...
In order to enable chatter on any model, you will need to install the mail module first.
This is because all the code required to enable chatter or mailing capabilities is part of
the mail module. That's why in step 1, we added the mail module dependency in the
manifest file of the my_library module. This will automatically install the mail
module whenever you install the my_library module.

The fields and methods required to operate chatter are part of the mail.thread model.
The mail.thread model is an abstract model and is just used for inheritance purposes.
In step 2, we inherited the mail.thread model in the library.book.rent model.
This will add all the necessary fields and methods required for chatter in the library.
book.rent model. If you don't know how model inheritance works, refer to the Using
abstract models for reusable model features recipe in Chapter 4, Application Models.

In the first two steps, we added all the fields and methods required for chatter. The only
remaining thing for chatter is adding a user interface in the form view. In step 3, we added
a message thread and follower widget. You might be wondering about the message_
follower_ids and message_ids fields. These fields are not added in the library.
book.rent model definition but they are added from the mail.thread model
through inheritance.

Managing activities on documents 709

There's more...
When you post messages in a chatter, emails will be sent to the followers. If you notice
in the example of this recipe, the borrower of the book is not the follower of the records,
so they will not receive the messages. If you want to send an email notification to the
borrower, you will need to add them to the borrower list. You can add the follower
manually from the user interface, but if you want to add them automatically, you can use
the message_subscribe() method. Take a look at the following code—when we place
a book on rent, the given code will automatically add borrowers to the list of followers:

 @api.model
 def create(self, vals):
 res = super(LibraryBookRent, self).create(vals)
 res.message_subscribe(partner_ids=[res.borrower_id.id])
 return res

Similarly, if you want to remove followers from the list, you can use the message_
unsubscribe() method.

Managing activities on documents
When using chatter, you can also add activities. These are used to plan your actions on the
record. It is kind of a to-do list for each record. In this recipe, you will learn how to enable
activities on any model.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe,
Managing chatter on documents. We will add activities to the library.book.rent
model.

How to do it...
Follow these steps to add activities to the library.book.rent model:

1. Inherit mail.activity.mixin in the Python definition of the library.
book.rent model:

class LibraryBookRent(models.Model):
 _name = 'library.book.rent'
 _inherit = ['mail.thread', 'mail.activity.mixin']
...

710 Managing Emails in Odoo

2. Add the mail_activity widget in the chatter of the library.book.rent
model:

...
<div class="oe_chatter">
 <field name="message_follower_ids" widget="mail_
followers"/>
 <field name="activity_ids" widget="mail_activity"/>
 <field name="message_ids" widget="mail_thread"/>
</div>
...

3. Update the my_library module to apply the changes. This will display chatter
activities:

Figure 23.5 – Activity manager on the rent form view

This is how the user will be able to manage different chatter activities. Note that an activity
scheduled by one user is visible to all other users too.

How it works...
Activities are part of the mail module and you can optionally enable them in chatter.
In order to enable activities on records, you need to inherit mail.activity.mixin.
Similar to the mail. thread model, mail.activity.mixin is also an abstract
model. Inheriting mail.activity.mixin will add all the necessary fields and
methods in the module. These methods and fields are used to manage activities on
records. In step 1, we added mail.activity.mixin into the library.book.rent
model. Because of this, the inheritance of library.book.rent will get all the methods
and fields required to manage activities.

In step 2, we added the mail_activity widget in the form view. This will display the
UI for managing activities. The activity_ids field is added in the library.book.
rent model through inheritance.

Sending emails using the Jinja template 711

Activities can be of different types. By default, you can create activities with types such as
Email, Call, Meeting, and To-Do. If you want to add your own activity type, you can
do it by going to Settings | Technical | Email | Activity Types in developer mode.

There's more...
If you want to schedule an activity automatically, you can use the activity_
schedule() method of the mail.activity.mixin model. This will create the
activity on a given due date. You can schedule the activity manually with the activity_
schedule() method, as follows:

@api.model
def create(self, vals):
 res = super(LibraryBookRent, self).create(vals)
 if res.return_date:
 res.activity_schedule('mail.mail_activity_data_call',
 date_deadline=res.return_date)
 return res

This example will schedule a call activity for the librarian whenever someone borrows a
book. The deadline of the activity will be set as the return date of the book, so the librarian
can make a call to the borrower on that date.

Sending emails using the Jinja template
Odoo supports creating dynamic emails through Jinja templates. Jinja is a text-based
templating engine used to generate dynamic HTML content. In this recipe, we will create
a Jinja email template and then send emails with its help.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe,
Managing activities on documents. We will add the Jinja template to send an email to the
borrower to tell them the book is overdue.

712 Managing Emails in Odoo

How to do it...
Follow these steps to send a reminder email to the borrower:

1. Create a new file called my_library/data/mail_template.xml and add the
email template:

<?xml version="1.0" encoding="utf-8"?>
<odoo noupdate="1">
 <record id="book_return_reminder" model="mail.
template">
 <field name="name">Book Return Reminder</field>
 <field name="email_from">${object.book_id.create_
uid.email}</field>
 <field name="email_to">${object.borrower_
id.email}</field>
 <field name="subject">Reminder for book return</
field>
 <field name="model_id" ref="my_library.model_
library_book_rent"/>
 <field name="body_html">
 <![CDATA[
 <p>Dear ${object.borrower_id.name},</p>
 <p>You had rented the
 ${object.book_id.name} book on
${format_date(object.rent_date)}

 The due date of book is <b
style="color:red;">${format_date(object.return_date)}.</
b>
 </p>

 <p>Best regards,

 Librarian</p>
]]>
 </field>
 </record>
</odoo>

2. Register the template file in the manifest file:

...
'data': [
 'security/groups.xml',
 'security/ir.model.access.csv',
 'views/library_book.xml',

Sending emails using the Jinja template 713

 'views/library_book_categ.xml',
 'views/library_book_rent.xml',
 'data/mail_template.xml'
],
...

3. Add a Send reminder button in the form view of the library.book.rent
model to send the email:

...
<header>
 <button name="book_return" string="Return the Book"
states="ongoing" type="object"/>
 <button name="book_return_reminder" string="Send
reminder" states="ongoing" type="object"/>
 <field name="state" widget="statusbar"/>
</header>
...

4. Add the book_return_reminder() method to the library.book.
rent model:

...
def book_return_reminder(self):
 template_id = self.env.ref('my_library.book_return_
reminder')
 self.message_post_with_template(template_id.id)

Update the my_library module to apply the changes. This will add a Send reminder
button in the form view of the library.book.rent model. When they click on the
button, followers will get the following message:

Figure 23.6 – Email sent via a Jinja template

714 Managing Emails in Odoo

The procedure shown in this recipe is useful when you want to send updates to your
customers through emails. Because of the Jinja template, you can send emails dynamically
based on individual records.

How it works...
In step 1, we created an email template using Jinja. Jinja templates help us generate
a dynamic email based on record data. The email template is stored in the mail.
template model. Let's see the list of fields you will need to pass in order to create a Jinja
email template:

• name: The name of the template that is used to identify a specific template.

• email_from: The value of this field will be the email address from which this
email is sent.

• email_to: The value of this field will be the email address of the recipient.

• email_cc: The value of this field will be used for the email address to send a copy
of the email.

• subject: This field contains the subject of the email.

• model_id: This field contains the reference of the model. The email template will
be rendered with the data of this model.

• body_html: This field will contain the body of the email template. It is a Jinja
template so you can use variables, loops, conditions, and so on. If you want to learn
more about Jinja templates, go to http://jinja.pocoo.org/docs/2.10/.
Usually, we wrap the content in the CDATA tag so the content in the body is
considered as character data and not as markup.

• auto_delete: This is a Boolean field that deletes an email once the email is sent.
The default value of this field is False.

• lang: This field is used to translate the email template into another language.

• scheduled_date: This field is used to schedule emails in the future.

Information
You can use ${} in the email_form, email_to, email_cc,
subject, scheduled_date, and lang fields. This helps you to set
values dynamically. Take a look at step 1 in our recipe—we used ${object.
borrower_id.email} to set the email_to field dynamically.

http://jinja.pocoo.org/docs/2.10/.

Sending emails using the Jinja template 715

If you look closely at the content of the body_html field, you will notice we used
${object.borrower_id.name}. Here, the object is the record set of the library.
book.rent model. During the rendering, ${object.borrower_id.name} will
be replaced with the borrower's name. Like object, some other helper functions and
variables are passed in the rendering context. Here is the list of helpers passed to the
renderer context:

• object: This variable will contain the record set of the model, which is set in the
template by the model_id field.

• format_date: This is a reference to the method used to format date-time objects.

• format_datetime: This is a reference to the method used to convert UTC date
and time into the date and time for another time zone.

• format_amount: This is a reference to the method used to convert float into
string with the currency symbol.

• format_duration: This method is used to convert float into time—for instance,
to convert 1.5 to 01:30.

• user: This will be the record set of the current user.

• ctx: This will contain the dictionary of the environment context.

Note
If you want to see the list of templates, activate developer mode, and open the
Settings | Technical | Email | Templates menu. The form view of the template
also provides a button to preview the rendered template.

In step 2, we registered the template file in the manifest file.

In step 3, we added a button in the form view to invoke the book_return_
reminder() method, which will send the email to the followers.

In step 4, we added the book_return_reminder() method, which will be invoked by
clicking the button. The message_post_with_template() method is used to send
the email. The message_post_with_template() method is inherited in the model
through mail.thread inheritance. To send the email, you just need to pass the template
ID as the parameter.

716 Managing Emails in Odoo

There's more...
The message_post_with_template() method is used to send emails with the Jinja
template. If you just want to send an email with plain text, you can use the message_
post() method:

self.message_post(body="Please return your book on time")

The preceding code will add the Please return your book on time message in the chatter.
All of the followers will be notified with this message. If you just want to log the message,
call the method with the subtype_id parameter.

Sending emails using the QWeb template
In the previous recipe, we learned how to send emails using the Jinja template. In this
recipe, we will see another way to send dynamic emails. We will send emails with the help
of the QWeb template.

Getting ready
For this recipe, we will use the my_library module from the previous recipe, Sending
emails using the Jinja template. We will use the QWeb template to send an email to the
borrower informing them that their book is overdue.

How to do it...
Follow these steps to send a reminder email to the borrower:

1. Add the QWeb template into the my_library/data/mail_template
.xml file:

<template id="book_return_reminder_qweb">
 <p>Dear ,</
p>
 <p>You had rented the

 book on

 The due date of book is
 <b style="color:red;">

Sending emails using the QWeb template 717

 </p>

 <p>Best regards,

 Librarian
 </p>
</template>

2. Add a Send reminder (QWeb) button in the form view of the library.
book.rent model to send the email:

...
<header>
 <button name="book_return" string="Return the Book"
states="ongoing" type="object"/>
 <button name="book_return_reminder" string="Send
reminder" states="ongoing" type="object"/>
 <button name="book_return_reminder_qweb" string="Send
reminder(QWeb)" states="ongoing" type="object"/>
 <field name="state" widget="statusbar"/>
</header>
...

3. Add the book_return_reminder_qweb() method in the library.book.
rent model:

...
def book_return_reminder_qweb(self):
 self.message_post_with_view('my_library.book_return_
reminder_qweb')

718 Managing Emails in Odoo

4. Update the my_library module to apply the changes. This will add a Send
reminder (QWeb) button in the form view of the library.book.rent model.
When the button is clicked, followers will get a message like this:

Figure 23.7 – Email sent via the QWeb template

The procedure shown in this recipe works exactly like the previous recipe, Sending emails
using the Jinja template. The only difference is the template type, as this recipe uses QWeb
templates.

How it works...
In step 1, we created a QWeb template with the book_return_reminder_qweb ID.
If you look in the template, you'll see we are not using the format_date() data field
method anymore. This is because the QWeb rendering engine handles this automatically
and displays the date based on the user's language. For the same reason, you are not
required to use the format_amount() method to display the currency symbols. The
QWeb rendering engine will manage this automatically. If you want to learn more about
QWeb templates, refer to the Creating or modifying templates – QWeb recipe from Chapter
14, CMS Website Development.

In step 2, we added a button in the form view to invoke the book_return_reminder_
qweb() method, which sends the email to the followers.

Sending emails using the QWeb template 719

In step 3, we added the book_return_reminder_qweb() method, which will be
invoked by a button click. The message_post_with_view() method is used to
send the email. The message_post_with_view() method is inherited in the model
through mail.thread inheritance. To send the email, you just need to pass the web
template's XML ID as the parameter.

Sending emails with the QWeb template works exactly the same as in the previous recipe,
but there are some subtle differences between the QWeb email template and the Jinja
email template. Here is a quick comparison between both templates:

• There is no simple way to send extra parameters in the email templates. You have
to use a record set in the object variable to fetch dynamic data. On the other hand,
with QWeb email templates, you can pass extra values in the renderer context
through the values parameter:

self.message_post_with_view(
 'my_library.book_return_reminder_qweb',
 values={'extra_data': 'test'}
)

• To manage the date format, time zone, and amount with currency symbols, in the
Jinja template you have to use the format_date, format_tz, and format_
amount functions, while in QWeb templates, it is managed automatically.

• It is not possible to modify an existing template for other modules in Jinja, whereas
in QWeb templates you can modify the email template through inheritance. If you
want to learn more about QWeb inheritance, refer to the Creating or modifying
templates – QWeb recipe in Chapter 14, CMS Website Development.

720 Managing Emails in Odoo

• You can select and use a Jinja template directly from the message composer. In the
following screenshot, the drop-down menu in the bottom-right corner is used to
select a Jinja template:

Figure 23.8 – Template selection option

• Using QWeb, selecting a template directly from the message composer is not an
option.

There's more...
All methods (message_post, message_post_with_template, and message_
post_with_view) respect the user's preference. If the user changes the notification-
management option from the user preferences, the user will not receive emails; instead,
they will receive notifications in Odoo's UI. This is the same for customers; if a customer
opts out of emails, they will not receive any updates through email.

Managing the email alias 721

Additionally, the Odoo message thread follows a concept called subtypes. Subtypes are
used to receive emails only for information you are interested in. You can pass an extra
parameter, subtype_id, in message_post_* methods to send emails based on the
subtype. Usually, the user will manage their subtypes from the dropdown of the Follow
button. Let's suppose the user has set their subtypes as follows:

Figure 23.9 – Option to edit subtype

Based on the user's preference, the user will only get emails for Discussions messages.

Managing the email alias
Email aliasing is the feature in Odoo that is used to create a record through incoming
emails. The simplest example of an email alias is sales teams. You just need to send an
email to sale@yourdomain.com and Odoo will create a new record for crm.lead in
the sales team. In this recipe, we will create one email alias to create a book's
borrowing record.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe,
Sending emails using the QWeb template. We will create our email alias with the rent@
yourdomain.com email address. If you send an email to this email address with the
book's name in the subject, a record is created in the library.book.rent model.

722 Managing Emails in Odoo

How to do it...
Follow these steps to add an email alias for the library.book.rent model:

1. Add the email alias data in the my_library/data/mail_template.xml file:

<record id="mail_alias_rent" model="mail.alias">
 <field name="alias_name">rent</field>
 <field name="alias_model_id" ref="model_library_book_
rent"/>
 <field name="alias_user_id" ref="base.user_admin"/>
 <field name="alias_contact">partners</field>
</record>

2. Add the following imports in the my_library/models/library_book_
rent.py file:

import re
from odoo.tools import email_split, email_escape_char

3. Override the message_new() method in the library.book.rent model:

@api.model
def message_new(self, msg_dict, custom_values=None):
 self = self.with_context(default_user_id=False)
 if custom_values is None:
 custom_values = {}
 regex = re.compile("^\[(.*)\]")
 match = regex.match(msg_dict.get('subject')).group(1)
 book_id = self.env['library.book'].search([
 ('name', '=', match),
 ('state', '=', 'available')], limit=1)
 custom_values['book_id'] = book_id.id
 email_from = email_escape_char(email_split(msg_dict.
get('from'))[0])
 custom_values['borrower_id'] = self._search_on_
partner(email_from)
 return super(LibraryBookRent, self).message_new(msg_
dict, custom_values)

Managing the email alias 723

Update the my_library module to apply the changes. Then send an email to rent@
yourdomain.com. Make sure you have included the book's name in the email subject,
for example, [Odoo 14 Development Cookbook] Request to borrow this book. This will
create the new library.book.rent record and it will be displayed as follows:

Figure 23.10 – Record generated via email

Whenever you send an email to rent@yourdomain.com with the book's name in the
email subject, Odoo will generate a new borrowing record. Note that this will work only if
the book is available in the library.

How it works...
In step 1, we created the mail.alias record. This alias will handle the rent@
yourdomain.com email address. When you send the email to this address, Odoo will
create a new record in the library.book.rent model. If you want to see the list of
active aliases in the system, open Settings | Technical | Email | Aliases. Here is a list of
the fields available to configure the alias:

• alias_name: This field holds the local part of the email address; for example, the
rent part in rent@yourdomain.com is the local part of the email address.

• alias_model_id: The model reference on which the record should be created for
the incoming email.

724 Managing Emails in Odoo

• alias_user_id: When incoming emails are received, records are created with
the environment of the user in this field.

• alias_contact: This field holds the security preferences for the alias. Possible
options are everyone, partners, followers, and employees.

• alias_defaults: When an incoming email is received, its record is created in
the model specified on the alias. If you want to set default values in the record, give
the values in the form of a dictionary in this field.

In step 2, we added the necessary imports. In step 3, we overrode the message_new()
method. This method is invoked automatically when a new email is received on the alias
email address. This method will take two parameters:

• msg_dict: This parameter will be the dictionary that contains information about
the received email. It contains email information such as the sender's email address,
the receiver's email address, email subject, and email body.

• custom_values: This is a custom value used to create a new record. This is the
same value you set on the alias record using the alias_defaults field.

In our recipe, we overrode the message_new() method and fetched the book's title
from the email subject through a regular expression. Then we fetched the email address
of the sender with the help of the tools we imported in step 2. We used the sender's email
address to find the borrower's record. Then we updated custom_values with these two
values: books_id and borrower_id. We pass this updated custom_values data to
the super() method, which will create a new library.book.rent record with the
given books_id and borrower_id values. This is how the record is created when you
send an email to the alias.

Note that this recipe generates an error when you don't send the proper email subject,
such as [book name] remaining subject. You can update the program according
to your business logic to avoid errors.

Logging user changes in a chatter 725

There's more...
Some business models have a requirement that means you need a separate alias per
record. For example, the sales team model has separate aliases for each team, such as
sale-in@example.com for Team India and sale-be@example.com for Team
Belgium. If you want to manage such aliases in your model, you can use mail.alias.
mixin. In order to use it in your model, you will need to inherit the mixin:

class Team(models.Model):
 _name = 'crm.team'
 _inherit = ['mail.alias.mixin', 'mail.thread']

After inheriting the mixin, you will need to add the alias_name field into the form view
so the end users can add aliases by themselves.

Logging user changes in a chatter
The Odoo framework provides a built-in facility to log field changes in a chatter. In this
recipe, we will enable logging on some of the fields, so when changes are made in them,
Odoo will add the logs in the chatter.

Getting ready
For this recipe, we will be using the my_library module from the previous recipe,
Managing the email alias. In this recipe, we will log changes from a few fields in the
library.book model.

How to do it...
Modify the definitions of the fields, to enable logs for the fields when you change them.
This is shown in the following code snippet:

class LibraryBookRent(models.Model):
 _name = 'library.book.rent'
 _inherit = ['mail.thread', 'mail.activity.mixin']

 book_id = fields.Many2one('library.book', 'Book',
required=True)
 borrower_id = fields.Many2one('res.partner', 'Borrower',
required=True)
 state = fields.Selection([('ongoing', 'Ongoing'),
('returned', 'Returned')], 'State', default='ongoing',
required=True, tracking=True)

726 Managing Emails in Odoo

 rent_date = fields.Date(default=fields.Date.today,
tracking=True)
 return_date = fields.Date(tracking=True)

Update the my_library module to apply the changes. Create a new record in the
library.book.rent model, make some changes in the fields, and then return the
book. If you check the chatter, you will see the following logs:

Figure 23.11 – Change log in the chatter

Whenever you make changes to state, rent_date, or return_date, you will see
a new log in the chatter. This will help you to see the full history of the record.

How it works...
By adding the tracking=True attribute on the field, you can enable logging for that
field. When you set the tracking=True attribute, Odoo will add a log that changes in
the chatter whenever you update the field value. If you enable tracking on multiple records
and you want to provide sequence in the tracking values, you can also pass a number in
the tracking parameter like this: tracking=20. When you pass tracking=True, then
the default sequence is used, which is 100.

In our recipe, we added tracking=True on the state, rent_date, and return_
date fields. This means Odoo will log the changes when you update the values of the
rent_date, return_date, or state fields. Take a look at the screenshot in the How
to do it… section; we have only changed the rent_date and return_date fields.

Note that the track_visibility feature only works if your model inherits the mail.
thread model because the code-related chatter and logs are part of the mail.
thread model.

Sending periodic digest emails 727

Sending periodic digest emails
The Odoo framework has built-in support for sending out periodic digest emails. With
digest emails, you can send an email with information about business KPIs. In this recipe,
we will send data about rented books to the librarian (or any other authorized person).

Getting ready
For this recipe, we will be using the my_library module from the previous recipe,
Logging user changes in a chatter.

How to do it...
Follow these steps to generate digest emails for book rent records:

1. Inherit the digest.digest model and add fields for the KPIs:

class Digest(models.Model):

 _inherit = 'digest.digest'

 kpi_book_rent = fields.Boolean('Book Rent')

 kpi_book_rent_value = fields.Integer(compute='_
compute_kpi_book_rent_value')

 def _compute_kpi_book_rent_value(self):

 for record in self:

 start, end, company = record._get_kpi_
compute_parameters()

 record.kpi_book_rent_value = self.
env['library.book.rent'].search_count([

 ('create_date', '>=', start),

 ('create_date', '<', end)

])

2. Inherit the digest.digest model's form view and add the KPI fields:

<?xml version='1.0' encoding='utf-8'?>

<odoo>

 <record id="digest_digest_view_form" model="ir.
ui.view">

 <field name="name">digest.digest.view.form.
inherit.library</field>

728 Managing Emails in Odoo

 <field name="model">digest.digest</field>

 <field name="inherit_id" ref="digest.digest_
digest_view_form"/>

 <field name="arch" type="xml">

 <xpath expr="//group[@name='kpi_general']"
position="after">

 <group name="kpi_library"
string="Library">

 <field name="kpi_book_rent"/>

 </group>

 </xpath>

 </field>

 </record>

</odoo>

Update the module to apply the changes. Once you update the module, enable developer
mode and open Settings | Technical | Emails | Digest Emails, as seen in the following
screenshot:

Figure 23.12 – Enabling the digest email for book rent data

Sending periodic digest emails 729

Once you enable this and if you have subscribed to digest emails, you will start receiving
digest emails.

How it works...
In order to build a customized digest email, you need two fields. The first field will be
a Boolean field, used to enable and disable the KPI, while the second field will be the
compute field and will be called to acquire the KPI value. We created both of the fields
in step 1. If you check the definition of the compute field, it uses the _get_kpi_
compute_parameters method. This method returns three parameters: a start date,
an end date, and the company record. You can use these parameters to generate the value
for your KPI. We have returned the number of books rented during a particular period of
time. If your KPI is multi-website-compatible, then you can use a company parameter.

In step 2, we added a field to the digest form view. This field is used to enable/disable
digest emails. When you enable it, you will start receiving digest emails:

Figure 23.13 – Digest email for book rent records

Enable developer mode, then open Settings | Technical | Emails | Digest Emails. Here
you can configure the recipients of the digest emails and set the periodicity for the digest
emails. You can also enable/disable digest emails from here.

24
Managing the

IoT Box
Odoo provides support for the Internet of Things (IoT). The IoT is a network of devices/
sensors that exchange the data over the internet. By connecting such devices with a
system, you can use them. For instance, by connecting a printer with Odoo, you can send
PDF reports directly to the printer. Odoo uses a piece of hardware called the IoT Box,
which is used to connect devices such as printers, calipers, payment devices, footswitches,
and more. In this chapter, you will learn how to set up and configure the IoT Box. Here,
we'll cover the following topics:

• Flashing the IoT Box image for Raspberry Pi

• Connecting the IoT Box with a network

• Adding the IoT Box to Odoo

• Loading drivers and listing connected devices

• Taking input from devices

• Accessing the IoT Box through SSH

• Configuring a point of sale

• Sending PDF reports directly to a printer

732 Managing the IoT Box

Note that the goal of this chapter is to install and configure the IoT Box. Developing
hardware drivers is outside the scope of this book. If you want to learn about the IoT Box
in more depth, explore the iot module in the Enterprise edition.

Technical requirements
The IoT Box is a Raspberry Pi-based device. The recipes in this chapter are based on
the Raspberry Pi 3 Model B+, available at https://www.raspberrypi.org/
products/ raspberry-pi-3-model-b-plus/. The IoT Box is the part of the
Enterprise edition, so you will need to use the Enterprise edition to follow the recipes in
this chapter.

All the code used in this chapter can be downloaded from the following GitHub
repository: https://github.com/PacktPublishing/Odoo-14-
Development-Cookbook-Fourth-Edition/tree/master/Chapter24/05_
capture_image/my_library.

Flashing the IoT Box image for Raspberry Pi
In this recipe, you will learn how to flash a microSD card with an image of the IoT Box.
Note that this recipe is only for those who have purchased the blank Raspberry Pi. If you
have purchased the official IoT Box from Odoo, you can skip this recipe as it is preloaded
with the IoT Box image.

Getting ready
Raspberry Pi 3 Model B+ uses a microSD card, so we have used a microSD card for this
recipe. You will need to connect a microSD card to your computer.

How to do it...
Perform the following steps to install an IoT Box image onto your SD card:

1. Insert a microSD card into your computer (use an adapter if your computer doesn't
have a dedicated slot).

2. Download the IoT Box image from Odoo's nightly builds. The image is available at
https://nightly.odoo.com/master/iotbox/.

3. Download and install balenaEtcher on your computer. You can download this from
https://www.balena.io/etcher/.

https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter24/05_capture_image/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter24/05_capture_image/my_library
https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition/tree/master/Chapter24/05_capture_image/my_library
https://nightly.odoo.com/master/iotbox/
https://www.balena.io/etcher/

Flashing the IoT Box image for Raspberry Pi 733

4. Open balenaEtcher, select the IoT Box image (we are using version 20.10 of the IoT
Box image), and choose to flash your microSD card. You'll see the following screen:

Figure 24.1 – Flashing the SD card with the IoT Box image

5. Click on the Flash! button and wait until the process completes.

6. Remove the microSD card and place it in the Raspberry Pi.

After these steps, your microSD card should be loaded with the IoT Box image and ready
to be used in the IoT Box.

How it works...
In this recipe, we have installed the IoT Box image on a microSD card. In the second step,
we downloaded the IoT Box image from the Odoo nightly builds. On the nightly page,
you can find different images for the IoT Box. You need to choose the latest image from
the Odoo nightly builds. When writing this book, we used the latest image, which was
iotboxv20_10.zip. The Odoo IoT Box image is based on the Raspbian Stretch Lite
OS and the image is loaded with the libraries and modules required to integrate the IoT
Box with the Odoo instance.

In step 3, we downloaded the balenaEtcher utility tool to flash the microSD card.

Note
In this recipe, we used balenaEtcher to flash the microSD card, but you can use
any other tools to flash the microSD card.

734 Managing the IoT Box

In step 4, we flashed the microSD card with the IoT Box image. Note that this process can
take several minutes. After the completion of the process, the microSD card will be ready
to be used.

Perform the following steps if you want to verify whether the image was flashed
successfully:

1. Mount the microSD card into Raspberry Pi.

2. Connect it with the power supply and attach the external display through an HDMI
cable (in practical usage, an external display is not compulsory; we have used it here
just for verification purposes).

3. The OS will boot up and show the following page:

Figure 24.2 – The IoT Box screen

If you are not using a display, you can just connect the IoT Box to a power supply and after
some time, you will see the Wi-Fi network of the IoT Box.

There's more...
In previous versions of Odoo, PosBox was used in point-of-sale applications. The IoT
Box supports all the features of PosBox, so if you are using the Community edition of
Odoo and you want to integrate devices, you can use the same IoT Box image to connect
Odoo instances with different devices. See the Configuring a point of sale recipe for more
information.

Connecting the IoT Box with a network 735

Connecting the IoT Box with a network
The IoT Box communicates with an Odoo instance through the network. Connecting the
IoT Box is a crucial step and if you make a mistake here, you might encounter errors when
connecting the IoT Box with Odoo.

Getting ready
Mount the microSD card with the IoT Box image into the Raspberry Pi and then connect
the Raspberry Pi with the power supply.

How to do it...
Raspberry Pi 3 Model B+ supports two types of network connection—Ethernet
and Wi-Fi.

Connecting the IoT Box through Ethernet is simple; you just need to connect your IoT
Box with the RJ45 Ethernet cable, and the IoT Box is then ready to be used. Connecting
the IoT Box through Wi-Fi is complicated as you might not have a display attached to it.
Perform the following steps to connect the IoT Box through Wi-Fi:

1. Connect the IoT Box with the power supply (if the Ethernet cable is plugged into
the IoT Box, remove it and restart the IoT Box).

2. Open your computer and connect to the Wi-Fi network, named IoTBox, as shown
in the following screenshot (no password is needed):

Figure 24.3 – IoT Box Wi-Fi network

736 Managing the IoT Box

3. After connecting to the Wi-Fi, you'll see a popup with the IoT Box home page as
shown in the following screenshot (if this does not work, open the IP address of the
box in the browser):

Figure 24.4 – Connecting to the IoT Box

4. Set IoT Box Name and keep Server token empty, then click on Next. This will
redirect you to a page where you can see a list of Wi-Fi networks:

Figure 24.5 – Connect to Wi-Fi

Note
You can use a server token if you are using the Enterprise edition and you want
to connect the IoT Box with Odoo right away. You can get a server token from
your Odoo instance; refer to the next recipe to learn more about it.

Connecting the IoT Box with a network 737

5. Select the Wi-Fi network that you want to connect to and fill in the Password
field. After doing this, click on the Connect button. If you entered the correct
information, you will be redirected to the final page:

Figure 24.6 – Confirmation page

After performing these steps, your IoT Box is connected to the network and ready to be
integrated with the Odoo instance.

How it works...
Connecting the Odoo instance to the IoT Box through Ethernet is simple; just connect
your IoT Box with the RJ45 Ethernet cable and the IoT Box is ready to be used. It's
different when you want to connect the IoT Box with Wi-Fi; this is difficult because the
IoT Box doesn't have a display or GUI. You do not have an interface to enter your Wi-Fi
network password. Consequently, the solution to this problem is to disconnect your IoT
Box from the Ethernet cable (if it is connected) and restart it. In such cases, the IoT Box
will create its own Wi-Fi hotspot, named IoT Box or similar, as shown in step 2. You need
to connect the Wi-Fi with the name IoT Box; luckily, it does not require a password. Once
you connect to the IoT Box Wi-Fi, you'll get a popup, as shown in step 3. Here, you can
name your IoT Box something like Assembly-line IoT Box. Keep the server token
empty for now; we will learn more about it in the Adding the IoT Box to Odoo recipe. Then
click on the Next button.

Upon clicking the Next button, you will be shown a list of Wi-Fi networks, as shown in
step 4. Here, you can connect the IoT Box to your Wi-Fi network. Make sure you choose
the right network. You need to connect the IoT Box with the same Wi-Fi network as the
computer on which the Odoo instance is going to be used. The IoT Box and the Odoo
instance communicate within a local area network (LAN). This means that if both are
connected to different networks, they cannot communicate and so IoT will not work.

738 Managing the IoT Box

After choosing the right Wi-Fi network, click on Connect. Then the IoT Box will turn
off its hotspot and reconnect to your configured Wi-Fi network. That's it—the IoT Box is
ready to be used.

Adding the IoT Box to Odoo
Our IoT Box is connected to the local network and ready to be used with Odoo. In this
recipe, we will connect the IoT Box with the Odoo instance.

Getting ready
Make sure the IoT Box is on and that you have connected the IoT Box to the same Wi-Fi
network as the computer with the Odoo instance.

There are a few things you need to take care of, otherwise the IoT Box will not be added to
Odoo:

• If you are testing the IoT Box in a local instance, you will need to use
http://192.168.*.*:8069 (your local IP) instead of http://
localhost:8069. If you use localhost, the IoT Box will not be added to your
Odoo instance.

• You need to connect the IoT Box with the same Wi-Fi/Ethernet network as the
computer on which the Odoo instance is being used. Otherwise, the IoT Box will
not be added in your Odoo instance.

• If your Odoo instance is running with multiple databases, IoT Box will not auto-
connect with the Odoo instance. Use the --db-filter option to avoid this issue.

How to do it...
In order to connect the IoT Box with Odoo, first you will need to install the iot module
on your Odoo instance:

1. To do so, go to the Apps menu and search for the Internet of Things module. The
module will look like as follows. Install the module and we are good to go:

Figure 24.7 – Installing the iot module

Adding the IoT Box to Odoo 739

2. After installing the iot module, you can connect your instance with the IoT Box.
Then connect your IoT Box manually with the Odoo instance by clicking on the
IoT menu.

3. Click on the Connect button on the control panel. This will show the following
popup. Copy the Token value:

Figure 24.8 – Dialog to connect the IoT Box with Odoo

4. Open the IP of the IoT Box with port 8069. This will display the home page of the
IoT Box. Click on the configure button in the Name section:

Figure 24.9 – The IoT Box home page

740 Managing the IoT Box

5. Set the IoT Box Name setting and paste in the server token. Then click on the
Connect button. This will start configuring the IoT Box. Wait for the process to
complete:

Figure 24.10 – The IoT Box home page

6. Check the IoT menu in your Odoo instance. You will find a new IoT Box:

Figure 24.11 – Successfully connected IoT Box

Adding the IoT Box to Odoo 741

How it works...
Connecting IoTBox with Odoo is important. This way, Odoo will know the IP of the
IoT Box. The IP will be used by Odoo to communicate with devices connected with that
device. This will also make sure, in case of multiple IoT Boxes, that Odoo communicates
with the right one. The rest is straightforward.

If you want to add an IoT Box to an Odoo instance during Wi-Fi configuration, that can
be done. In the Connecting the IoT Box with the network recipe, we kept the Server token
field empty. You just need to add the server token in this step:

Figure 24.12 – Adding the server token during Wi-Fi configuration

Note
Avoid using the DHCP network when using the IoT Box. This is because the
IoT Box network configuration is added based on the IP address. If you use
the DHCP network, then the IP address is assigned dynamically. So, there is a
chance that your IoT Box will stop responding due to the new IP address. To
avoid this issue, you can map the MAC address of the IoT Box to the fixed IP
address.

742 Managing the IoT Box

Connecting an IoT Box with a pairing code
There is one more alternative way to connect an IoT Box, which is through a pairing
code. The pairing code can be found on the Point of Sale (POS) display page of the IoT
Box. There are two ways to open a POS client display. The first is by connecting the IoT
Box with an external display. When you start your IoT Box with a display connected, it
will open the POS client display by default. The second way is to open the POS client via
the IoT Box IP. The URL for the POS client display is as follows: <IoTBOX IP>:8069/
point_of_sale/display. Once you open the POS client display, you will be able to
see the pairing code as follows:

Figure 24.13 – The pairing code for the IoT Box

Then you just need to use the pairing code in the IoT Box connection dialog in your Odoo
instance.

Note
The pairing code will not be displayed if you are not connected to the internet.

Loading drivers and listing connected devices 743

In the preceding figure, we have seen how you can get the pairing code for the POS client
display. But if you have an Ethernet connection and a printer, you can get the pairing code
without a display. You just need to connect the IoT Box with the Ethernet and the printer.
Once the IoT Box is booted, it will print a receipt with the pairing code. Then you just
need to use the pairing code in the IoT Box connection dialog in your Odoo instance.

There's more...
If you want to connect an existing IoT Box with any other Odoo instance, you will need to
clear the configuration. You can clear the IoT Box configuration with the Clear button in
the Odoo server configuration page of the IoT Box:

Figure 24.14 – Clearing the IoT Box configuration

Loading drivers and listing connected devices
The IoT Box is not just limited to the Enterprise edition. You can use it like PoSBox in
the Community edition. The device's integration is part of the Enterprise edition, so the
IoTBox image does not come with device drivers; you need to load them manually.
Usually, if you connect the IoT Box with and Enterprise Odoo instance, the IoT Box loads
the device driver interfaces automatically. But sometimes, you might have custom drivers
or drivers that are not loaded correctly. In that case, you can manually load the drivers. In
this recipe, we will see how you can load drivers and get a list of connected devices.

744 Managing the IoT Box

Getting ready
Make sure the IoT Box is on and that you have connected it to the same Wi-Fi network as
the computer with the Odoo instance.

How to do it...
Perform the following steps to load device drivers into the IoT Box:

1. Open the IoT Box home page and click on the handlers list button at the bottom:

Figure 24.15 – Handlers list

Loading drivers and listing connected devices 745

2. The handlers list button will redirect you to the Handlers list page, where you will
find the Load handlers button. Click on the button to load the drivers:

Figure 24.16 – Drivers list

3. Go back to the IoT Box home page. Here, you will see a list of the connected
devices:

Figure 24.17 – Connected devices

746 Managing the IoT Box

After performing these steps, the IoT Box will be ready with the devices you specified and
you can start using the devices in your applications.

How it works...
You can load the drivers from the home page of the IoT Box. You can do this using the
Load handlers button at the bottom. Note that this will only work if your IoT Box is
connected with the Odoo instance using the Enterprise edition. After loading the drivers,
you will be able to see a list of devices on the IoT Box home page. You can also see a list of
connected devices in the Odoo instance through the IoT | Devices menu. In this menu,
you will see a list of connected devices for each IoT Box:

Figure 24.18 – Connected devices list

Right now, the IoT Box supports a few hardware devices, such as cameras, footswitches,
printers, and calipers. The list of devices that are recommended by Odoo can be found
here: https://www.odoo.com/page/iot-hardware. If your device is not
supported, you can pay for driver development.

Taking input from devices
The IoT Box only supports limited devices. Right now, these hardware devices are
integrated with the manufacturing application. But if you want, you can integrate
supported devices with your module. In this recipe, we will capture a picture from a
camera through our IoT Box.

Taking input from devices 747

Getting ready
We will be using the my_library module from the Logging user changes in a chatter
recipe of Chapter 23, Managing Emails in Odoo. In this recipe, we will add a new field to
capture and store images when a borrower returns a book. Make sure the IoT Box is on
and that you have connected a supported camera device with it.

How to do it...
Perform the following steps to capture a picture using a camera with the IoT Box:

1. Add a dependency in the manifest file:

...
'depends': ['base', 'mail', 'quality_iot'],
...

2. Add new fields in the library.book.rent model:

...
device_id = fields.Many2one('iot.device', string='IoT
Device',
 domain=”[('type', '=', 'camera')]”)
ip = fields.Char(related=”device_id.iot_id.ip”)
identifier = fields.Char(related='device_id.identifier')
picture = fields.Binary()
...

3. Add these fields into the form view of the library.book.rent model:

<group>
 <field name=”book_id” domain=”[('state', '=',
'available')]”/>
 <field name=”borrower_id”/>
 <field name=”ip” invisible=”1”/>
 <field name=”identifier” invisible=”1”/>
 <field name=”device_id” required=”1”/>
 <field name=”picture” widget=”iot_picture”
 options=”{'ip_field': 'ip', 'identifier':
'identifier'}”/>
</group>

748 Managing the IoT Box

4. Update the my_library module to apply the changes. After the update, you will
have a button to capture pictures:

Figure 24.19 – Capturing an image via IoT

Note that the button will not capture the image if the webcam is not connected to the IoT
Box or drivers are not loaded in the IoT Box.

How it works...
In step 1, we added a dependency to the quality_iot module in the manifest file. The
quality_iot module is part of the Enterprise edition and contains a widget that allows
you to request an image from a camera through the IoT Box. This will install the stock
modules, but for the sake of simplicity, we will use quality_iot as a dependency. If
you do not want to use this dependency, you can create your own field widget. Refer to
the Creating custom widgets recipe in Chapter 15, Web Client Development, to learn more
about widgets.

Accessing the IoT Box through SSH 749

In step 2, we added the fields required to capture an image from the camera. To capture
the image, we need two things: the device identifier and the IP address of the IoT Box. We
want to give the user the option to select the camera, so we added a device_id field. The
user will choose a camera to capture the image, and based on the selected camera device,
we extracted IP and device identifier information from related fields. Based on these fields,
Odoo will know where to capture the image, if you have multiple IoT Boxes. We have also
added a binary field, picture, to save the image.

In step 3, we added fields in the form view. Note that we used the iot_picture widget
on the picture field. We added the ip and identifier fields as invisible fields
because we do not want to show them to the user; rather, we want to use them in the
picture field options. This widget will add the button in the form view; upon clicking
the button, Odoo will make a request to the IoT Box to capture the image. The IoT Box
will return image data as the response. This response will be saved in the picture binary
field.

There's more...
The IoT Box supports Bluetooth calipers. If you want to take measurements in your
module, you can use the iot_measure widget to fetch them in Odoo. Note that as with
iot_picture, here you will also need to add the ip and identifier invisible fields
in the form view:

<field name=”measure” widget=”iot_measure”
 options=”{'ip_field': 'ip', 'identifier':
'identifier'}”/>

This will fill the measure field with the data captured from the IoT caliper.

Accessing the IoT Box through SSH
The IoT Box is running on Raspbian OS, and it is possible to access the IoT Box through
SSH. In this recipe, we will learn how to access the IoT Box through SSH.

Getting ready
Make sure the IoT Box is on and you have connected the IoT Box to the same Wi-Fi
network as the computer with the Odoo instance.

750 Managing the IoT Box

How it works...
In order to connect the IoT Box through SSH, you will need the IP address of the IoT
Box. You can see this IP address in its form view. As an example, in this recipe, we will use
192.168.43.6 as the IoT Box IP address, so replace this with your IP address. Perform
the following steps to access the IoT Box through SSH:

1. Open the Terminal and execute the following command:

$ ssh pi@192.168.43.6
pi@192.168.43.6's password:

2. The Terminal will ask you for a password; enter raspberry as the password.

3. If you added the right password, you can access the shell. Execute the following
command to see the directory:

total 24

-rw-r--r-- 1 root root 6 Oct 26 08:12 iotbox_version

drwxr-xr-x 5 pi pi 4096 Oct 23 09:05 odoo

-rw-r--r-- 1 pi pi 36 Nov 15 13:10 odoo-db-uuid.
conf

-rw-r--r-- 1 pi pi 0 Nov 15 13:10 odoo-enterprise-
code.conf

-rw-r--r-- 1 pi pi 26 Nov 15 13:10 odoo-remote-
server.conf

-rw-r--r-- 1 pi pi 11 Nov 15 13:10 token

-rw-r--r-- 1 pi pi 26 Aug 20 12:03 wifi_network.txt

As you have SSH access, you can explore the full filesystem of the IoT Box.

How to do it...
We used the Pi user with the password raspberry to access the IoT Box through SSH.
SSH connection is used when you want to debug a problem in the IoT Box. SSH doesn't
need any explanation, but let's see how Odoo works in the IoT Box.

Here is some information that might help you debug the issue:

• The IoT Box is internally running some Odoo modules. The name of these modules
usually starts with hw_ and they are available in the Community edition. You can
find all the modules in the /home/pi/odoo/addon directory.

Accessing the IoT Box through SSH 751

• If you want to see the Odoo server log, you can access it from the /var/log/
odoo/odoo-server.log file.

• Odoo is running through a service named odoo; you can use the following
command to start, stop, or restart the service:

sudo service odoo start/restart/stop

• Customers mostly turn the IoT Box off by disconnecting the power. This means that
the IoT Box OS does not shut down properly in such cases. To avoid corruption of
the system, the IoT Box filesystem is read-only.

There's more...
Note that the IoT Box is only connected with the local machine. Consequently, you cannot
access the shell directly from a remote location (through the internet). If you want to
access the IoT Box remotely, you can paste the ngrok authentication token key in the IoT
Box's remote debug page, as shown in the following screenshot. This will enable the TCP
tunnel from the IoT Box so you can connect the IoT Box through SSH from anywhere.
Learn more about ngrok at https://ngrok.com/:

Figure 24.20 – Debugging with an ngrok token

Once you add your token, you will be able to access the IoT Box from remote locations.

https://ngrok.com/

752 Managing the IoT Box

Configuring a point of sale
The IoT Box works with point-of-sale applications. In this recipe, we will learn how to
configure the IoT Box for point-of-sale applications.

Getting ready
Make sure the IoT Box is on and you have connected IoT Box to the same Wi-Fi network
as the computer with the Odoo instance. Also, install the point-of-sale application if it is
not already installed.

How to do it...
Perform the following steps to configure the IoT Box for the point-of-sale application:

1. Open the point-of-sale application, and open Settings from the POS session
dropdown:

Figure 24.21 – POS session settings

2. Click on the Settings button. You will be redirected to the Settings page. Search for
the Connected Devices section and click on the IoT Box checkbox. This will enable
more options:

Configuring a point of sale 753

Figure 24.22 – Selecting IoT devices

3. Select the devices that you want to use in a point-of-sale session. If you are going to
use hardware, such as a barcode scanner, select the relevant devices.

4. Save the changes by clicking the Save button in the control panel.

After the configuration, you will be able to use the IoT Box in the point-of-sale
application.

How it works...
The IoT Box can be used with point-of-sale applications like the PosBox. In order to use
the IoT Box in a point-of-sale application, you have to connect the IoT Box to the Odoo
instance. If you don't know how to connect the IoT Box, follow the Adding the IoT Box to
Odoo recipe. Once you have connected the IoT Box to Odoo, you will be able to select the
IoT Box in the point-of-sale application, as shown in step 2.

754 Managing the IoT Box

Here, you can select the hardware you want to use in the point-of-sale session. After
saving the change, if you open the point-of-sale session, you will be able to use the enabled
hardware at the point of sale. If you enabled specific hardware from the settings but the
hardware is not connected to the IoT Box, you will see the following warning in the
top bar:

Figure 24.23 – IoT Box connection issues

You can click on these warnings to try to connect again.

There's more...
The point-of-sale application is part of the Community edition. If you are using the
Community edition, instead of the IoT Box selection, you will see the IoT Box IP
Address field in the point-of-sale settings:

Figure 24.24 – IoT Box settings in the Community edition

If you want to integrate hardware in the Community edition, you will need to use the IP
address of the IoT Box in the field.

Sending PDF reports directly to a printer 755

Sending PDF reports directly to a printer
The IoT Box runs the CUPS server by default. CUPS is a printing system that allows a
computer to act as a printing server. You can learn more about it at https://www.
cups.org/. So, as the IoT Box runs CUPS internally, you can connect network printers
with the IoT Box. In this recipe, we will see how you can print PDF reports directly from
Odoo.

Getting ready
Make sure the IoT Box is on and you have connected the IoT Box with Odoo.

How to do it...
Follow these steps to print reports directly from Odoo:

1. Open the IoT Box home page via IP.

2. Click on the Printer Server button at the bottom:

Figure 24.25 – Options to configure the printer

756 Managing the IoT Box

3. This will open the CUPS configuration home page. Configure your printer here.

4. Once you have configured the printer, you will be able to see the printer in the
IoT device list. Activate developer mode and open Settings| Technical | Actions |
Report.

5. Search for the report that you want to print, open the form view, and select the
printer in the IoT Device field, as shown in the following screenshot:

Figure 24.26 – Options to select an IoT device

Once this configuration is done, report PDFs will be sent directly to the printer.

How it works...
This recipe is straightforward in terms of configuration, but there are a few things that
you should know. The IoT Box uses the CUPS server to print reports. You can access the
CUPS home page at http://<IoT Box IP>:631.

With CUPS, you can add/remove your printer. On the home page of CUPS, you will be
able to see all the documentation that you need to help you connect different types of
printers. Once you have configured the printer, you will find your printer in the IoT device
list. Then, you can select this IoT device (printer) in the report record. Usually, when you
print a report in Odoo, it will download a PDF of the report. But when this configuration
is done, instead of downloading the report, Odoo will send the PDF report directly to the
selected printer. Note that only reports whose record has the printer set in the IoT device
field will be sent to the printer.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The Art of CRM

Max Fatouretchi

ISBN: 978-1-78953-892-2

• Deliver CRM systems that are on time, on budget, and bring lasting value to
organizations

• Build CRM that excels at operations, analytics, and collaboration

• Gather requirements effectively: identify key pain points, objectives, and functional
requirements

• Develop customer insight through 360-degree client view and client profiling

• Turn customer requirements into a CRM design spec

• Architect your CRM platform

https://www.packtpub.com/product/the-art-of-crm/9781789538922

758 Other Books You May Enjoy

• Bring machine learning and artificial intelligence into your CRM system

• Ensure compliance with GDPR and other critical regulations

• Choose between on-premise, cloud, and hybrid hosting solutions

Mastering Object-Oriented Python

Steven F. Lott

ISBN: 978-1-78953-136-7

• Explore a variety of different design patterns for the __init__() method

• Learn to use Flask to build a RESTful web service

• Discover SOLID design patterns and principles

• Use the features of Python 3's abstract base

• Create classes for your own applications

• Design testable code using pytest and fixtures

• Understand how to design context managers that leverage the 'with' statement

• Create a new type of collection using standard library and design techniques

• Develop new number types above and beyond the built-in classes of numbers

https://www.packtpub.com/product/mastering-object-oriented-python-second-edition/9781789531367

Leave a review - let other readers know what you think 759

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

Symbols
2 Factor Authentication (2FA) 656
--dev option

about 210
working 210, 211

@http.route decorator 426
_populate_dependencies attribute

using 592
/xmlrpc/2/common endpoint

version() method, example 628

A
abstract models

using, for reusable model
features 147-149

access
limiting, to fields in models 333, 334

access-control lists (ACLs) 329
activities

managing, from kanban card 405-407
activity view

defining 319, 320
add-on module

about 82, 83
access security, adding 101-104

changes, applying 75, 76
creating 83, 84
file structure, organizing 89-92
installing 83-85
installing, from GitHub 74, 75
list updating 56, 58
manifest, completing 86-89
menu items, adding 95-99, 100
versioning 202-204
views, adding 95-97, 99, 100

add-ons path
configuring 60-62
working 61

Affero General Public License
version 3 (AGPLv3) 31

API decorators
using 152-156

API keys
generating 656, 658
using 658
working 658

archive option
enabling, for records 410, 411

asset bundles, Odoo
about 430
features 432

762 Index

web.assets_backend 431
web.assets_common 431
web.assets_frontend 431
web_editor.summernote 431
web.report_assets_common 431
website.assets_editor 431
website.assets_frontend 431

assets, Odoo
about 430
working with 433

automated actions
about 393
using, on event conditions 397-399
using, on time conditions 393-396

automated actions, on record updates
benefits 400
drawbacks 400

auto-reload 210

B
Boolean field 729
Bootstrap

URL 448
branches

managing 604
working 609, 610

business logic
extending, in model 176-178

buttons
adding, to form view 276

C
calendar views

attributes 311
defining 310
working 311

chatter
managing, on documents 707
message_subscribe() method, using 709
user changes, logging 725, 726
working 708

chatter activities
activity_schedule() method, using 711
managing, on documents 709, 710
working 710

chatter widgets 300
check_access_rights method 637
class inheritance (extension) 140
client-side code

debugging 507-509
client-side QUnit test cases

adding 575-577
assert functions 579
working 577-579

client-side QWeb templates
using 489-491

client-side test cases
debugging 586-588
Headless Chrome, setting

up for 574, 575
running, from UI 583
working 587

code reuse 243
cohort view

defining 313, 314
command-line interface 215
Community Edition 30
complex modules

configuration options 66
compute field 729
compute method

used, for defining onchange
methods 250, 251

conditionals 445

Index 763

construct 442
context

about 233, 277
parameters, passing to forms

and actions 277-280
used, for computing default values 243

context node 295
controller 505
converters 423
country information, of visitor

obtaining 468-470
create() method

extending 179-182
cross-site request forgery 418
Cross-Site Request Forgery (CSRF) 463
CSS

adding, for website 435-438
CSV files

used, for loading data 200, 201
custom assets

about 432
bundle, creating 432, 433

Customer Relationship
Management (CRM) 30

custom JavaScript/SCSS files
adding, to Point of Sale asset

bundle 682-684
custom language URL code

modifying, for website 365, 367
custom metatags

adding 466
custom settings options

adding 255, 256, 258, 259
custom widgets

creating 483-488

D
dashboard view

defining 315-317
data

fetching, in groups with read_
group() method 186, 187

loading, with CSV files 200, 201
loading, with XML files 193-197

database queries
records, accessing through 674, 676

data fields
adding, to model 112-118

data files 91
data migrations

running 202-204
data normalization 252
Datetime fields 313
datetime Python module

reference link 389
deactivated (archived) partner

records 278
debugging options

accessing 610
branch history 611
code editor 614
logs 615
mail catcher 611, 612
web shell 612-614

debug mode options 223, 224, 226, 228
default values

computing, with context 243
delegation inheritance

used, for copying features to
another model 144-147

dependency handling 73

764 Index

developer mode 54
development branch

creating 606, 607
devices

input, obtaining from 746, 748, 749
Document Object Model (DOM) 587
documents

chatter activities, managing 709, 710
chatter, managing 707, 708

document-style forms
defining 298, 299
working 299, 300

domain
filters, defining on record lists 281-283
pitfalls, of searching fields 284

drivers connected devices
loading 743-745
working 746

duplicate data structures 144
dynamic attributes 443, 444
dynamic form elements

modifying, attr attribute used 300, 301
dynamic record stages

library.rent.stage model,
creating 373, 374

managing 370-373
dynamic relations

adding, reference fields used 138-140
dynamic routes

managing 448-451
dynamic snippet

about 452
offering, to user 455-459

E
email alias

fields list 723

mail.alias.mixin, using 725
managing 721, 723
working 723, 724

emails
sending, with Jinja template 711-714
sending, with QWeb template 716, 717

embedded views
defining 301, 302

empty recordset
obtaining, for different model 158-160

Enterprise Edition 30
Enterprise Resource Planning

(ERP) 30, 431
error message

reporting, to user 156-158
event conditions

automated actions, using 397-399
event triggers 386
existing handler

modifying 424-426
working 425

external IDs
using 190, 191, 193

Extra Rights 328

F
failed test cases

videos/screenshots, generating
for 588, 589

fields 445
file

translation strings, exporting to 358-361
file structure

organizing, of add-on module 89-92
float field

using, with configurable
precision 119, 120

Index 765

Font Awesome
URL 300

forcecreate flags
using 198, 199

form view
attachments, displaying side

by side 303-305
attrs attributes 274
button element 272
buttons, adding 276
content, adding 270-276
field element 273
form element 272
group element 272
groups attributes 274
header element 272
notebook tag 273
oe_edit_only class 275
oe_inline class 275
oe_read_only class 275
OWL field, adding to 529-533
page tag 273
stat button, adding to 407-409
tags 274, 275
widgets, adding to 270-276

G
gantt view

defining 317, 318
item, hovering 318

GeoIP 468
gettext tools

used, for translations 362, 363
git commands

using 616
GitHub

add-on module, installing from 74, 75

Git repositories 31
global record rules 338
GNU gettext documentation

reference link 364
graph view

defining 311
working 312

grouped data
accessing 668, 671

H
Headless Chrome

about 574
setting up, for client-side

test cases 574, 575
HTTP routes 419, 424

I
IAP account credit

offers, displaying 563, 565, 566
working 566

IAP client module
creating 557, 559-561
services, checking 562, 563
working 561, 562

IAP concepts
about 538
working 538, 539

IAP credits
authorizing 551-553, 556
charging 551-553, 556
working 554, 556

IAP service
registering, in Odoo 541-544
working 544, 545

IAP service flow 539, 540

766 Index

IAP service module
creating 545, 546, 548-550
working 550

image size
generating 666, 667

incoming email server
configuring 702, 704, 706
fields list 705, 706
working 705

inheritance
used, for adding features

to model 140-142
used, for copying model

definition 142, 143
init hooks

implementing 259, 260
inline template 520
input

obtaining, from website users 460-463
instance directory layout

generating 65
standardizing 62-64

interactive kanban card
creating 380-383
working 383, 384

IoT Box
accessing, through SSH 749-751
adding, to Odoo 738-741
connecting, with network 735-738
connecting, with pairing code 742

IoT Box image
flashing, for Raspberry Pi 732-734

ipdb debugger
reference link 223

J
JavaScript

adding, for website 435-438
Jinja template

fields list 714
message_post_with_template()

method, using 716
reference link 714
used, for sending emails 711-714
versus QWeb template 719
working 714, 715

JSON-RPC
check_access_rights method 649
methods, calling through 650-652
records, creating through 647, 649
records, deleting through 647, 649
records, fetching through 643, 645
records, searching through 643, 645
records, updating through 647, 649
search_read() method, using 646
used, for connecting to Odoo 640-642
used, for logging into Odoo 640-642
version() method 642

JSON-RPC 2.0 specification
reference link 557, 642

JSON-RPC2 transaction API
reference link 557

K
kanban board

about 375
features 378

kanban card
activities, managing 405-407

Index 767

displaying, in columns 308-310
quick create form, adding to 378-380

kanban stages
managing 375, 377
working 377

kanban views
defining 305-307
helper functions 308
progress bar, adding 384, 385
working 307

L
language

installing 350-352
language-related settings

configuring 353, 354
Least-Recently Used (LRU) cache 665
LESS 432
Lesser General Public License

v3.0 (LGPLv3) 30
Library Books model

access, limiting to fields 333, 334
adding, to module 92-94
computed fields, adding 132-137
constraint validations, adding 129-132
data fields, adding to 112-118
features, adding with

inheritance 140, 141
hierarchy, adding 127-129
monetary field, adding 120-122
record representation 111
relational fields, adding 122-126
representation and order,

defining 108-111
security access, adding to 329-332

listing connected devices
loading 743-745

working 746
list views

create attribute 287
defining 285, 286
delete attribute 287
editable attribute 287
edit attribute 287
sum attribute 287
working 286

local add-on modules
installing 67, 71
installing, from command line 70
installing, from web interface 68, 69
upgrading 67, 71, 72
upgrading, from command line 70
upgrading, from web interface 68, 69

local area network (LAN) 737
loops 442, 443

M
many-to-many (m2m) relations 122, 126
many-to-one (m2o) relations 122, 125
mapbox

reference link 320
mapped() method

properties 173
map view

defining 320, 321
marketing campaign

tracking 471-473
menu item

adding 263-265
adding, to add-on module 95-97, 99-101

menus, in security groups
hiding 347, 348

message_new() method, parameters
custom_values 724

768 Index

msg_dict 724
method calling

with modified context 233-235
method execution

tracing, with Python debugger 218-223
methods

calling, through JSON-RPC 650-652
calling, through XML-RPC 637, 639
calling, with Odoo shell 215-217
debugging, by producing server

logs 211-213, 215
mixin 479
model definition

copying, inheritance used 142, 143
model methods

defining 152-156
model, renderer, controller (MRC) 504
model, view, controller (MVC) 504
modified context

used, for calling method 233-235
module

creating, with scaffold
command 103, 105

multiple records
creating 671-673
writing 671-673

multiple websites
managing 473-476

my-custom-event 523

N
namespaces

using 190-193
nested set model

URL 127
network

IoT Box, connecting with 735-738

path, making accessible from 414-418
new view

creating 495, 496, 498-505, 507
non-global record rules 338
noupdate attribute

using 198, 199

O
Object Relational Mapping

(ORM) 94, 235, 661
Odoo

accessing, as superuser 98, 99
connecting, with JSON-RPC 640-642
connecting, with XML-RPC 626, 628
IAP service, registering 541-544
IoT Box, adding to 738-741
logging, with JSON-RPC 640-642
logging, with XML-RPC 626, 628
translation files, importing into 364, 365

Odoo Community Association
(OCA) 74, 652

Odoo developer tools
activating 54-56

Odoo, devices
reference link 746

Odoo ecosystem 30
Odoo editions 30
Odoo editions, comparison

reference link 31
Odoo Enterprise edition

about 320
cohort view 314

odoo.execute method 655
Odoo instance

configuration file, storing
in 50, 51, 53, 54

Index 769

Odoo mobile app
JavaScript 513-515
mobile utilities 515
URL 515

odoorpc library
about 654
reference link 652
working 654, 655

Odoo server databases
database backup, restoring 46, 47
database instance, backing up 46
database instance, duplicating 44, 45
database instance, removing 45
managing 49
working 48

Odoo.sh account
creating 597, 598, 600, 601
working 600

Odoo.sh account, instances
GitHub repository 600
hosting location 600
Odoo version 600
subscription code 600

Odoo shell
REPL shell interface, using 218
used, for calling methods 215-217

Odoo.sh options
about 619
collaborator 620, 621
database size 624
database workers 623
module installation 621
project name 620
public access 621
source code revisions 624
staging branch 623
submodules 622

Odoo.sh platform

about 594
backup 616, 617
build status, checking 617-619
concepts, exploring 594
custom modules, adding 601-604
custom modules, installing 601-604
need for 595
using 595

Odoo.sh platform, features
about 596
automated tests 596
backup and recovery 597
build, sharing 597
community modules 597
development branch 596
external dependencies 596
faster deployment 597
GitHub integration 596
mail catcher 597
mail server 597
server logs 596
SSH access 596
staging branch 596
web code editor 596
web shell 596

old URLs
redirecting 476, 477

onchange methods
calling, on server side 248, 250
defining 245, 246
defining, with compute method 250, 251
field values, computing 247, 248
working 247

one-to-one (o2m) relations 122, 125
Optimize SEO option 465
ormcache_context decorator 664
ormcache decorator

about 663

770 Index

in-memory cache, managing 662, 665
ormcache_multi decorator 664, 665
outgoing email server

configuring 702, 704-706
fields list 706
working 705

OWL component
creating 518-520
reactivating 523-526
user actions, managing 521-523
working 520, 521

OWL component life cycle
about 526-528
working 528

OWL component life cycle, methods
constructor() 528
mounted() 528
patched() 529
willPatch() 528
willStart() 528
willUnmount() 529

OWL field
adding, to form view 529-533
working 534, 535

OWL library
reference link 521

P
pairing code

IoT Box, connecting with 742
parameters, passed to handlers

consuming 422, 423
path, making accessible from network

about 414, 415
odoo.http.route, using 416
request object 418
return values 416, 417

PDF reports
sending, to printer 755, 756

periodic digest emails
sending 727, 728
working 729

pivot view
defining 311
working 312

Platform as a Service (PaaS) 594
Point of Sale application

action button, adding on
keyboard 685-688

business logic, modifying 695-697
customer receipts, modifying 698-700
RPC calls, making 689-692
screen UI, modifying 693-695

Point of Sale asset bundle
custom JavaScript/SCSS files,

adding 682-684
Point of Sale (POS)

about 742, 754
configuring 752, 753
working 753

Point of Sale restaurant module 685
PostgreSQL aggregate functions

reference link 671
printer

PDF reports, sending to 755, 756
production branch

creating 605
features, merging 609

profile() method
parameters 678

progress bar
adding, in kanban views 384, 385
working 385

Promise
reference link 495

Index 771

Prototype inheritance 142
publish management

for website-related records 478, 479
publish mixin 480
pudb debugger

reference link 223
Pull Request (PR)

about 31
applying 77, 78
trying 77, 78

Python code
about 91
evaluating 389
profiling 677-679
working 678

Python code server action
creating 392
limitations 392
using 390, 391

Python debugger (PDB)
about 211
using, to trace method

execution 218-223
Python test cases

adding 569, 570
classes 571
reference link 570
working 570

Q
quick create form

adding, to kanban card 378-380
QUnit test cases

running, from UI 584
QWeb 437
QWeb attributes

conditionals 445

dynamic attributes 443, 444
fields 445
inline editing 446, 447
loops 442, 443
subtemplates 446
variables, setting 446

QWeb-based PDF reports
creating 400-402, 404
working 403, 404

QWeb template
about 492
creating 439-441
methods, using 720
modifying 439-441, 447
used, for sending emails 716, 718
versus Jinja template 719
working 718

QWeb template design
reference link 448

R
random data

populating for testing 589-591
Raspberry Pi

IoT Box image, flashing for 732-734
raw SQL queries

executing 236-239
read_group() method

about 668, 669
parameters 670
used, for fetching data in

groups 186, 187
working 187, 188, 669

record access
limiting, with record rules 335-338

record rules
about 335

772 Index

fields 337
used, for limiting record access 335-338

records
accessing, through database

queries 674, 676
archive option, enabling for 410, 411
creating 160-163
creating, through JSON-RPC 647, 649
creating, through XML-RPC

633, 635, 636
customizing 182-185
deleting, from XML files 205, 206
deleting, through JSON-RPC 647, 649
deleting, through XML-RPC

633, 635, 636
fetching, through JSON-RPC 643, 645
reading, through XML-RPC 629, 631
searching 166, 168, 169
searching, through JSON-RPC 643, 645
searching, through XML-RPC 629, 631
updating, through JSON-RPC 647, 649
updating, through XML-RPC

633, 635, 636
recordset records

values, updating 164-166
recordset relations

traversing 172-174
recordsets

accessing, as superuser 345, 346
combining 169
filtering 171, 172
pattern, prefetching 660-662
sorting 174, 175
working 170

redirect button
adding, to book's form view 480

redirection options
301 Moved permanently 477

302 Moved temporarily 477
308 Redirect / Rewrite 477
404 Not Found 477

redirection rule 476
reference fields

used, for adding dynamic
relations 138-140

related fields, stored in other models
exposing 137, 138

relational fields
adding, to model 122-125

remote procedure call (RPC) 157
renderer 505
RequireJS

URL 438
ReStructuredText (RST) format

about 87
reference link 87

Return on Investment (ROI) 471
route decorator 418
RPC calls

making, to server 492-494
RPC libraries, for Odoo

reference links 656

S
scaffold command

used, for creating module 103-105
SCSS

about 432
URL 438

search filter side panel
adding 291, 292
items, displaying 293

search views
defining 287, 288
filters, grouping with group tag 290

Index 773

responding, to context keys 291
working 289, 290

security access
adding, to models 329-332

security groups
additional fields 328
assigning, to users 324-328
creating 324-328
using, to activate features 339-344

self.env.ref() function 192
SEO options

managing 464, 465
separation of concerns 252
server actions

creating 386, 387
working 388, 389

server logs
about 211
producing, to debug methods

211-213, 215
server side

onchange methods, calling 248, 250
sitemaps

managing, for website 466-468
snippet option

creating 459
Software as a Service (SaaS) 595
specific view

custom view, using 270
ir.actions.act_window.view 269
opening, with action 268, 269
opening, with window action 267

SQL view model
defining 252-254

SSH
IoT Box, accessing through 749-751

staging branch
creating 608

stat button
adding, to form view 407-409

state field
using 374

static assets
managing 430

static hierarchies 129
static resources

serving 427
working 428

static snippet
about 452
offering, to user 452-454

status bar 272
subtypes 721
superuser

Odoo, accessing as 98, 99
recordsets, accessing as 345, 346

T
tablet mode 266
tagged Python test cases

running 571, 572
working 572, 573

text file editor
reference link 361

texts
translating, through web client

user interface 355-358
text strings 361
time conditions

automated actions, using 393-396
tour

adding, to library 510-512
tour test cases

adding 579-582
running, from UI 585, 586

774 Index

working 582, 583
translation files 352, 353

importing, into Odoo 364, 365
translation strings

exporting, to file 358-361
tree element. See list views

U
UI

client-side test cases, running from 583
QUnit test cases, running from 584
tour test cases, running from 585, 586

unaccent 291
Urchin Tracking Module (UTM) 471
user

dynamic snippet, offering to 455-459
static snippet, offering to 452-454

user actions
managing, in OWL component 521-523
modifying 230-232
sudo() recordset, using 233
working 232

user changes
logging, in chatter 725, 726

user guide
wizard, writing for 239-242

user preferences
configuring 350-352

user redirecting 244
users

dynamic snippet, offering to 455-459
security groups, assigning to 324-328
static snippet, offering to 452-454

V
videos/screenshots

generating, for failed test cases 588, 589
view elements, in security groups

hiding 347, 348
view inheritance

attribute node 296
existing views, changing 293-295
order of evaluation 297
position attribute 296
tricks, for tweaking behavior 297

views
adding, to add-on module 95-97, 99-101

Voice over Internet Protocol (VoIP) 30

W
web-accessible paths

access, restricting 419-422
web assets 91
web client user interface

texts, translating through 355-358
website

CSS, adding for 435-438
JavaScript, adding for 435-438
sitemaps, managing for 466-468

website-related records
publish management 478, 479

website users
input, obtaining from 460-463

WebSockets 574
werkzeug 451
window action

adding 263-266
target attribute 266
used, for opening specific view 267-269

Index 775

wizard
about 149, 243
writing, for user guide 239,

240, 241, 242
write() method

extending 179-182

X
XML files

functions, invoking from 206-208
records, deleting from 205, 206
used, for loading data 193-197

XML-RPC
check_access_rights method 636
methods, calling through 637, 639
records, creating through 633, 635, 636
records, deleting through 633, 635, 636
records, reading through 629, 631
records, searching through 629, 631
records, updating through 633, 635, 636
search_read method, using 632, 633
used, for connecting to Odoo 626, 628
used, for logging into Odoo 626, 628

	Cover
	Title page
	Copyright and Credits
	About Packt
	Contributors and Table of Contents
	Preface
	Chapter 1: Installing the Odoo Development Environment
	Understanding the Odoo ecosystem
	Odoo editions
	Git repositories
	Runbot
	Odoo app store
	Odoo Community Association
	Official Odoo help forum
	Odoo's eLearning platform

	Easy installation of Odoo from source
	Getting ready
	How to do it...
	How it works...

	Managing Odoo server databases
	Getting ready
	How to do it...
	How it works...
	There's more...

	Storing the instance configuration in a file
	How to do it...
	How it works...

	Activating Odoo developer tools
	How to do it...
	How it works...

	Updating the add-on modules list
	Getting ready
	How to do it…
	How it works…

	Chapter 2: Managing Odoo Server Instances
	Configuring the add-ons path
	Getting ready
	How to do it…
	How it works…
	There's more…

	Standardizing your instance directory layout
	How to do it…
	How it works…
	There's more...

	Installing and upgrading local add-on modules
	Getting ready
	How to do it…
	How it works…
	There's more…

	Installing add-on modules from GitHub
	Getting ready
	How to do it…
	How it works…
	There's more…

	Applying changes to add-ons
	Getting ready
	How to do it…
	How it works…
	See also

	Applying and trying proposed pull requests
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 3: Creating Odoo
Add-On Modules
	Technical requirements
	What is an Odoo add-on module?
	Creating and installing a new add-on module
	Getting ready

	How to do it...
	How it works...

	Completing the add-on module manifest
	Getting ready
	How to do it...
	How it works...
	There's more…

	Organizing the add-on module file structure
	Getting ready
	How to do it...
	How it works...

	Adding models
	Getting ready
	How to do it...
	How it works...

	Adding menu items and views
	Getting ready
	How to do it...
	How it works...

	Adding access security
	Getting ready
	How to do it...
	How it works…
	See also

	Using the scaffold command to create
a module
	Getting ready
	How to do it...
	How it works...

	Chapter 4: Application Models
	Technical requirements
	Defining the model representation and order
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding data fields to a model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using a float field with configurable precision
	Getting ready
	How to do it...
	How it works...

	Adding a monetary field to a model
	Getting ready
	How to do it...
	How it works...

	Adding relational fields to a model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding a hierarchy to a model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding constraint validations to a model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding computed fields to a model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Exposing related fields stored in other models
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding dynamic relations using
reference fields
	Getting ready
	How to do it...
	How it works...

	Adding features to a model using inheritance
	Getting ready
	How to do it...
	How it works...

	Copy model definition using inheritance
	Getting ready
	How to do it...
	How it works...
	There's more…

	Using delegation inheritance to copy features to another model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using abstract models for reusable model features
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: Basic Server-Side Development
	Technical requirements
	Defining model methods and using API decorators
	Getting ready
	How to do it...
	How it works...

	Reporting errors to the user
	Getting ready
	How to do it...
	How it works...
	There's more...

	Obtaining an empty recordset for a different model
	Getting ready
	How to do it...
	How it works...
	See also

	Creating new records
	Getting ready
	How to do it...
	How it works...
	There's more…

	Updating values of recordset records
	Getting ready
	How to do it...
	How it works...
	There's more...

	Searching for records
	Getting ready
	How to do it...
	How it works...
	There's more...

	Combining recordsets
	Getting ready
	How to do it...
	How it works...

	Filtering recordsets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Traversing recordset relations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sorting recordsets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Extending the business logic defined in
a model
	Getting ready
	How to do it...
	How it works...
	There's more...

	Extending write() and create()
	Getting ready
	How to do it...
	How it works...
	There's more...

	Customizing how records are searched
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Fetching data in groups using read_group()
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Managing
Module Data
	Technical requirements
	Using external IDs and namespaces
	How to do it...
	How it works...
	There's more...
	See also

	Loading data using XML files
	How to do it...
	How it works...
	There's more...

	Using the noupdate and forcecreate flags
	How to do it...
	How it works...
	There's more...
	See also

	Loading data using CSV files
	How to do it...
	How it works...
	There's more...

	Add-on updates and data migration
	How to do it...
	How it works...
	There's more...
	See also

	Deleting records from XML files
	Getting ready
	How to do it...
	How it works...

	Invoking functions from XML files
	How to do it...
	How it works...
	There's more...

	Chapter 7: Debugging Modules
	The auto-reload and --dev options
	Getting ready
	How to do it...
	How it works...

	Producing server logs to help debug methods
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the Odoo shell to interactively call methods
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the Python debugger to trace method execution
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Understanding the debug mode options
	How to do it...
	How it works...

	Chapter 8: Advanced Server-Side Development Techniques
	Technical requirements
	Changing the user that performs an action
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Calling a method with a modified context
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Executing raw SQL queries
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing a wizard to guide the user
	Getting ready
	How to do it...
	How it works...
	There's more...

	See also
	Defining onchange methods
	Getting ready
	How to do it...
	How it works...
	There's more...

	Calling onchange methods on the server side
	Getting ready
	How to do it...
	How it works...
	See also

	Defining onchange with the compute method
	Getting ready
	How to do it...
	How it works...
	There's more...

	See also
	Defining a model based on a SQL view
	Getting ready
	How to do it...
	How it works...
	There's more...

	See also
	Adding custom settings options
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing init hooks
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Backend Views
	Technical requirements
	Adding a menu item and window actions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Having an action open a specific view
	How to do it...
	How it works...
	There's more...

	Adding content and widgets to a form view
	How to do it...
	How it works...
	There's more...
	See also

	Adding buttons to forms
	How to do it...
	How it works...
	There's more...

	Passing parameters to forms and actions – context
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Defining filters on record lists – domain
	How to do it...
	How it works...
	There's more...
	See also

	Defining list views
	How to do it...
	How it works...
	There's more...

	Defining search views
	How to do it...
	How it works...
	There's more...
	See also

	Adding a search filter side panel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Changing existing views – view inheritance
	How to do it...
	How it works...
	There's more...

	Defining document-style forms
	How to do it...
	How it works...

	See also
	Dynamic form elements using attrs
	How to do it...
	How it works...
	There's more...

	Defining embedded views
	How to do it...
	How it works...
	There's more...

	Displaying attachments on the side of the form view
	How to do it...
	How it works...
	There's more...

	Defining kanban views
	How to do it...
	How it works...
	There's more...

	See also
	Showing kanban cards in columns according to their state
	Getting ready
	How to do it...
	How it works...
	There's more...

	Defining calendar views
	How to do it...
	How it works...
	There's more...

	Defining graph view and pivot view
	Getting ready
	How to do it...
	How it works...
	There's more...

	Defining the cohort view
	Getting ready
	How to do it...
	How it works...

	Defining the dashboard view
	Getting ready
	How to do it...
	How it works...
	There's more....

	Defining the gantt view
	Getting ready
	How to do it...
	How it works...
	There's more...

	Defining the activity view
	Getting ready
	How to do it...
	How it works...

	Defining the map view
	Getting ready
	How to do it…
	How it works...

	Chapter 10: Security Access
	Technical requirements
	Creating security groups and assigning them to users
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding security access to models
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Limiting access to fields in models
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Limiting record access using record rules
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using security groups to activate features
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accessing recordsets as a superuser
	How to do it...
	How it works...
	There's more...

	Hiding view elements and menus based on groups
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 11: Internationalization
	Installing a language and configuring user preferences
	How to do it...
	How it works...
	There's more...

	Configuring language-related settings
	Getting ready
	How to do it...
	How it works...
	There's more...

	Translating texts through the web client user interface
	Getting ready
	How to do it...
	How it works...
	There's more...

	Exporting translation strings to a file
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using gettext tools to make translations easier
	How to do it...
	How it works...
	There's more...

	Importing translation files into Odoo
	Getting ready
	How to do it...
	How it works...

	Changing the custom language URL code for
a website
	Getting ready
	How to do it...
	How it works...

	Chapter 12: Automation, Workflows, Emails, and Printing
	Technical requirements
	Managing dynamic record stages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See more

	Managing kanban stages
	Getting started
	How to do it...
	How it works...
	There's more...
	See more

	Adding a quick create form to a kanban card
	Getting started
	How to do it...
	How it works...

	Creating interactive kanban cards
	Getting started
	How to do it...
	How it works...

	Adding a progress bar in kanban views
	Getting started
	How to do it...
	How it works...

	Creating server actions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Python code server actions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See more

	Using automated actions on time conditions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See more

	Using automated actions on event conditions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating QWeb-based PDF reports
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing activities from a kanban card
	Getting started
	How to do it...
	How it works...
	There's more…
	See also

	Adding a stat button to a form view
	Getting started
	How to do it...
	How it works...
	See also

	Enabling the archive option for records
	Getting started
	How to do it...
	How it works...
	There's more…

	Chapter 13: Web Server Development
	Technical requirements
	Making a path accessible from the network
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Restricting access to web-accessible paths
	Getting ready
	How to do it...
	How it works...
	There's more...

	Consuming parameters passed to your handlers
	How to do it...
	How it works...
	There's more...
	See also

	Modifying an existing handler
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also

	Serving static resources
	Getting ready
	How to do it...
	How it works…

	Chapter 14: CMS Website Development
	Managing static assets
	What are asset bundles and different assets in Odoo?
	Custom assets
	How to do it...
	How it works...
	There’s more...

	Adding CSS and JavaScript for a website
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Creating or modifying templates – QWeb
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Managing dynamic routes
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Offering static snippets to the user
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Offering dynamic snippets to the user
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Getting input from website users
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Managing SEO options
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Managing sitemaps for the website
	Getting ready...
	How to do it...
	How it works...
	There’s more...

	Getting a visitor’s country information
	Getting ready
	How to do it...
	How it works...

	Tracking a marketing campaign
	Getting ready
	How to do it...
	How it works...

	Managing multiple websites
	Getting ready
	How to do it...
	How it works...

	Redirecting old URLs
	Getting ready
	How to do it...
	How it works...

	Publish management for website-related records
	Getting ready
	How to do it…
	How it works...
	There’s more…

	Chapter 15: Web Client Development
	Technical requirements
	Creating custom widgets
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Using client-side QWeb templates
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Making RPC calls to the server
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Creating a new view
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Debugging your client-side code
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Improving onboarding with tours
	Getting ready
	How to do it...
	How it works...

	Mobile app JavaScript
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Chapter 16: The Odoo Web Library (OWL)
	Technical requirements
	Creating an OWL component
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing user actions in an OWL component
	Getting ready
	How to do it...
	How it works...
	There's more...

	Making OWL components reactive
	Getting ready
	How to do it...
	How it works...

	Understanding the OWL component life cycle
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding an OWL field to the form view
	Getting ready
	How to do it...
	How it works...

	Chapter 17: In-App Purchasing with Odoo
	Technical requirements
	IAP concepts
	How it works...
	The IAP service flow
	There's more...

	Registering an IAP service in Odoo
	Getting ready
	How to do it...
	How it works...

	Creating an IAP service module
	Getting ready
	How to do it...
	How it works...

	Authorizing and charging IAP credits
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating an IAP client module
	Getting ready
	How to do it...
	How it works...
	There's more...

	Displaying offers when an account lacks credits
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 18: Automated Test Cases
	Technical requirements
	Adding Python test cases
	Getting ready
	How to do it...
	How it works...
	There's more...

	Running tagged Python test cases
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up Headless Chrome for client-side test cases
	How to do it...
	How it works...

	Adding client-side QUnit test cases
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding tour test cases
	Getting ready
	How to do it...
	How it works...

	Running client-side test cases from the UI
	How to do it...
	How it works...

	Debugging client-side test cases
	Getting ready
	How to do it...
	How it works...

	Generating videos/screenshots for failed test cases
	How to do it...
	How it works...

	Populating random data for testing
	Getting ready
	How to do it...
	How it works...
	There's more…

	Chapter 19: Managing, Deploying, and Testing with
Odoo.sh
	Technical requirements
	Exploring some basic concepts of Odoo.sh
	What is Odoo.sh?
	Why was Odoo.sh introduced?
	When should you use Odoo.sh?
	What are the features of Odoo.sh?

	Creating an Odoo.sh account
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding and installing custom modules
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing branches
	Getting ready
	How to do it...
	How it works...

	Accessing debugging options
	How to do it...
	There's more...

	Getting a backup of your instance
	How to do it...
	How it works...

	Checking the status of your builds
	How to do it...
	How it works...
	There's more...

	All Odoo.sh options
	Getting ready
	How to do it...
	There's more...

	Chapter 20: Remote Procedure Calls in Odoo
	Technical requirements
	Logging in to/connecting Odoo with XML-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Searching/reading records through XML-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating/updating/deleting records through XML-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Calling methods through XML-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Logging in to/connecting Odoo with JSON-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Fetching/searching records through JSON-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating/updating/deleting records through JSON-RPC
	Getting ready
	How to do it...
	How it works...
	There's more...

	Calling methods through JSON-RPC
	Getting ready
	How to do it...
	How it works...

	The OCA odoorpc library
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Generating API keys
	How to do it...
	How it works...

	Chapter 21: Performance Optimization
	The prefetching pattern for recordsets
	How to do it…
	How it works...
	There's more...

	The in-memory cache – ormcache
	How to do it...
	How it works...
	There's more...

	Generating differently sized images
	How to do it...
	How it works...
	There's more...

	Accessing grouped data
	How to do it...
	How it works...
	There's more...
	See also

	Creating or writing multiple records
	How to do it...
	How it works...
	There's more...

	Accessing records through database queries
	How to do it...
	How it works...
	There's more...

	Profiling Python code
	How to do it...
	How it works...
	There's more...

	Chapter 22: Point of Sale
	Technical requirements
	Adding custom JavaScript/SCSS files
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding an action button on the keyboard
	Getting ready
	How to do it...
	How it works...
	There's more...

	Making RPC calls
	Getting ready
	How to do it...
	How it works...
	There's more...

	Modifying the Point of Sale screen UI
	Getting ready
	How to do it...
	How it works...

	Modifying existing business logic
	Getting ready
	How to do it...
	How it works...

	Modifying customer receipts
	Getting ready
	How to do it...
	How it works...

	Chapter 23: Managing Emails
in Odoo
	Technical requirements
	Configuring incoming and outgoing email servers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing chatter on documents
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing activities on documents
	Getting ready
	How to do it...
	How it works...
	There's more...

	Sending emails using the Jinja template
	Getting ready
	How to do it...
	How it works...
	There's more...

	Sending emails using the QWeb template
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing the email alias
	Getting ready
	How to do it...
	How it works...
	There's more...

	Logging user changes in a chatter
	Getting ready
	How to do it...
	How it works...

	Sending periodic digest emails
	Getting ready
	How to do it...
	How it works...

	Chapter 24: Managing the
IoT Box
	Technical requirements
	Flashing the IoT Box image for Raspberry Pi
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting the IoT Box with a network
	Getting ready
	How to do it...
	How it works...

	Adding the IoT Box to Odoo
	Getting ready
	How to do it...
	How it works...
	There's more...

	Loading drivers and listing connected devices
	Getting ready
	How to do it...
	How it works...

	Taking input from devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accessing the IoT Box through SSH
	Getting ready
	How it works...
	How to do it...
	There's more...

	Configuring a point of sale
	Getting ready
	How to do it...
	How it works...
	There's more...

	Sending PDF reports directly to a printer
	Getting ready
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

